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Preface 

The 1990s saw a wave of calculus reform whose aim was to teach students to think 

for themselves and to solve substantial problems, rather than merely memorizing 

formulas and performing rote algebraic manipulations. This book has a similar, 

albeit somewhat more ambitious, goal: to lead you to think mathematically and 

to experience the thrill of independent intellectual discovery. Our chosen subject, 

Number Theory, is particularly well suited for this purpose. The natural numbers 

1, 2, 3, ... satisfy a multitude of beautiful patterns and relationships, many of 

which can be discerned at a glance; others are so subtle that one marvels they were 

noticed at all. Experimentation requires nothing more than paper and pencil, but 

many false alleys beckon to those who make conjectures on too scanty evidence. It 

is only by rigorous demonstration that one is finally convinced that the numerical 

evidence reflects a universal truth. This book will lead you through the groves 

wherein lurk some of the brightest flowers of Number Theory, as it simultaneously 

encourages you to investigate, analyze, conjecture, and ultimately prove your own 

beautiful number theoretic results. 

This book was originally written to serve as a text for Math 42, a course created 

by Jeff Hoffstein at Brown University in the early 1990s. Math 42 was designed to 

attract nonscience majors, those with little interest in pursuing the standard calculus 

sequence, and to convince them to study some college mathematics. The intent was 

to create a course similar to one on, say, "The Music of Mozart" or "Elizabethan 

Drama," wherein an audience is introduced to the overall themes and methodology 

of an entire discipline through the detailed study of a particular facet of the subject. 

Math 42 has been extremely successful, attracting both its intended audience and 

also scientifically oriented undergraduates interested in a change of pace from their 

large-lecture, cookbook-style courses. 

The prerequisites for reading this book are few. Some facility with high school 

algebra is required, and those who know how to program a computer will have fun 

generating reams of data and implementing assorted algorithms, but in truth the 

reader needs nothing more than a simple calculator. Concepts from calculus are 

mentioned in passing, but are not used in an essential way. However, and the reader 

v 



vi Preface 

is hereby forewarned, it is not possible to truly appreciate Number Theory without 

an eager and questioning mind and a spirit that is not afraid to experiment, to make 

mistakes and profit from them, to accept frustration and persevere to the ultimate 

triumph. Readers who are able to cultivate these qualities will find themselves 

richly rewarded, both in their study of Number Theory and their appreciation of all 

that life has to offer. 
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Changes in the Fourth Edition 

There are a number of major changes in the fourth edition. 

• There is a new chapter on mathematical induction (Chapter 26).

• Some material on proof by contradiction has been moved forward to Chap

ter 8. It is used in the proof that a polynomial of degree d has at most d

roots modulo p. This fact is then used in place of primitive roots as a tool to

prove Euler's quadratic residue formula in Chapter 21. (In earlier editions,

primitive roots were used for this proof.)

• The chapters on primitive roots (Chapters 28-29) have been moved to follow

the chapters on quadratic reciprocity and sums of squares (Chapters 20-25).
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The rationale for this change is the author's experience that students find the 

Primitive Root Theorem to be among the most difficult in the book. The new 

order allows the instructor to cover quadratic reciprocity first, and to omit 

primitive roots entirely if desired. 

• Chapter 22 now includes a proof of part of quadratic reciprocity for Jacobi

symbols, with the remaining parts included as exercises.

• Quadratic reciprocity is now proved in full. The proofs for ( �1) and (�)
remain as before in Chapter 21, and there is a new chapter (Chapter 23) that

gives Eisenstein's proof for (�) (�). Chapter 23 is significantly more difficult

than the chapters that precede it, and it may be omitted without affecting the

subsequent chapters.

• As an application of primitive roots, Chapter 28 discusses the construction

of Costas arrays.

• Chapter 39 includes a proof that the period of the Fibonacci sequence mod-

ulo p divides p - 1 when p is congruent to 1 or 4 modulo 5.

• There are many new exercises scattered throughout the text.

• A flowchart giving chapter dependencies is included on page ix.

• Number theory is a vast and sprawling subject, and over the years this book

has acquired many new chapters. In order to keep the length of this edition

to a reasonable size, Chapters 47-50 have been removed from the printed

version of the book. These omitted chapters are freely available online at

http://www.math.brown.edu/-jhs/frint.html 

http://www.pearsonhighered.com/mathstatsresources 

The online chapters are included in the index. 

Email and Electronic Resources 

All the people listed above have helped me to correct numerous mistakes and to 

greatly refine the exposition, but no book is ever free from error or incapable of 

being improved. I would be delighted to receive comments, good or bad, and 

corrections from my readers. You can send mail to me at 

jhs@math.brown.edu 

Additional material, including extra chapters, an errata sheet, links to interesting 

number theoretic sites, and downloadable versions of various computer exercises, 

are available on the Friendly Introduction to Number Theory Home Page: 

www.math.brown.edu/-jhs/frint.html 

Joseph H. Silverman 
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Introduction 

Euclid alone 

Has looked on Beauty bare. Fortunate they 

Who, though once only and then but far away, 

Have heard her massive sandal set on stone. 

Edna St. Vincent Millay ( 1923) 

The origins of the natural numbers 1, 2, 3, 4, 5, 6, ... are lost in the mists of 

time. We have no knowledge of who first realized that there is a certain concept of 

"threeness" that applies equally well to three rocks, three stars, and three people. 

From the very beginnings of recorded history, numbers have inspired an endless 

fascination-mystical, aesthetic, and practical as well. It is not just the numbers 

themselves, of course, that command attention. Far more intriguing are the rela

tionships that numbers exhibit, one with another. It is within these profound and 

often subtle relationships that one finds the Beauty1 so strikingly described in Edna

St. Vincent Millay's poem. Here is another description by a celebrated twentieth

century philosopher. 

Mathematics, rightly viewed, possesses not only truth, but supreme 

beauty-a beauty cold and austere, like that of sculpture, without ap

peal to any part of our weaker nature, without the gorgeous trappings 

of paintings or music, yet sublimely pure, and capable of a stern per

fection such as only the greatest art can show. (Bertrand Russell, 1902) 

The Theory of Numbers is that area of mathematics whose aim is to uncover 

the many deep and subtle relationships among different sorts of numbers. To take 

a simple example, many people through the ages have been intrigued by the square 

numbers 1, 4, 9, 16, 25, .... If we perform the experiment of adding together pairs 

1 Euclid, indeed, has looked on Beauty bare, and not merely the beauty of geometry that most 

people associate with his name. Number theory is prominently featured in Books VII, VIII, and IX 

of Euclid's famous Elements. 
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of square numbers, we will find that occasionally we get another square. The most 

famous example of this phenomenon is 

but there are many others, such as 

Triples like (3, 4, 5), (5, 12, 13), (20, 21, 29), and (28, 45, 53) have been given the 

name Pythagorean triples. Based on this experiment, anyone with a lively curiosity 

is bound to pose various questions, such as "Are there infinitely many Pythagorean 

triples?" and "If so, can we find a formula that describes all of them?" These are 

the sorts of questions dealt with by number theory. 

As another example, consider the problem of finding the remainder when the 

huge number 

324 78543 7 43921429837645 

is divided by 54817263. Here's one way to solve this problem. Take the number 

32478543, multiply it by itself 743921429837645 times, use long division to di

vide by 54817263, and take the remainder. In principle, this method will work, 

but in practice it would take far longer than a lifetime, even on the world's fastest 

computers. Number theory provides a means for solving this problem, too. "Wait a 

minute," I hear you say, "Pythagorean triples have a certain elegance that is pleas

ing to the eye, but where is the beauty in long division and remainders?" The 

answer is not in the remainders themselves, but in the use to which such remain

ders can be put. In a striking turn of events, mathematicians have shown how the 

solution of this elementary remainder problem (and its inverse) leads to the cre

ation of simple codes that are so secure that even the National Security Agency2 

is unable to break them. So much for G.H. Hardy's singularly unprophetic remark 

that "no one has yet discovered any warlike purpose to be served by the theory of 

numbers or relativity, and it seems very unlikely that anyone will do so for many 

years."3 

The land of Number Theory is populated by a variety of exotic flora and fauna. 

There are square numbers and prime numbers and odd numbers and perfect num

bers (but no square-prime numbers and, as far as anyone knows, no odd-perfect 

numbers). There are Fermat equations and Pell equations, Pythagorean triples and 

2The National Security Agency (NSA) is the arm of the United States government charged with 

data collection, code making, and code breaking. The NSA, with a budget larger than that of the 

CIA, is supposedly the single largest employer of mathematicians in the world. 
3A Mathematician's Apology, §28, G.H. Hardy, Camb. Univ. Press, 1940. 
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elliptic curves, Fibonacci's rabbits, unbreakable codes, and much, much more. You 

will meet all these creatures, and many others, as we journey through the Theory 

of Numbers. 

Guide for the Instructor 

This book is designed to be used as a text for a one-semester or full-year course 

in undergraduate number theory or for an independent study or reading course. 

It contains approximately two semesters' worth of material, so the instructor of a 

one-semester course will have some flexibility in the choice of topics. The first 11 

chapters are basic, and probably most instructors will want to continue through 

the RSA cryptosystem in Chapter 18, since in my experience this is one of the 

students' favorite topics. 

There are now many ways to proceed. Here are a few possibilities that seem to 

fit comfortably into one semester, but feel free to slice-and-dice the later chapters 

to fit your own tastes. 

Chapters 20-26, 31-34, and 47-48. Quadratic Reciprocity, sums of squares, in

duction, Pell's equation, Diophantine approximation, and continued frac

tions. 

Chapters 30-34 and 41-46. Fermat's equation for exponent 4, Pell's equation, 

Diophantine approximation, elliptic curves, and Fermat's Last Theorem. 

Chapters 26, 31-39 and 47-48. Induction, Pell's equation, Diophantine approx

imation, Gaussian integers, transcendental numbers, binomial coefficients, 

linear recurrences, and continued fractions. 

Chapters 19-22, 26-29, and 38-40. Primality testing, quadratic reciprocity, in

duction, primitive roots, binomial coefficients, linear recurrences, big-Oh 

notation. (This syllabus is designed in particular for students planning fur

ther work in computer science or cryptography.) 

In any case, a good final project is to have the students read a few of the omitted 

chapters and do the exercises. 

Most of the nonnumerical nonprogramming exercises in this book are designed 

to foster discussion and experimentation. They do not necessarily have "correct" 

or "complete" answers. Many students will find this extremely disconcerting at 

first, so it must be stressed repeatedly. You can make your students feel more at 

ease by prefacing such questions with the phrase "Tell me as much as you can 

about .... " Tell your students that accumulating data and solving special cases are 

not merely acceptable, but encouraged. On the other hand, tell them that there is 
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no such thing as a complete solution, since the solution of a good problem always 

raises additional questions. So if they can fully answer the specific question given 

in the text, their next task is to look for generalizations and for limitations on the 

validity of their solution. 

Aside from a few clearly marked exercises, calculus is required only in two late 

chapters (Big-Oh notation in Chapter 40 and Generating Functions in Chapter 49). 

If the class has not taken calculus, these chapters may be omitted with no harm to 

the flow of the material. 

Number theory is not easy, so there's no point in trying to convince the stu

dents that it is. Instead, this book will show your students that they are capable of 

mastering a difficult subject and experiencing the intense satisfaction of intellectual 

discovery. Your reward as the instructor is to bask in the glow of their endeavors. 

Computers, Number Theory, and This Book 

At this point I would like to say a few words about the use of computers in con

junction with this book. I neither expect nor desire that the reader make use of a 

high-level computer package such as Maple, Mathematica, PARI, or Derive, and 

most exercises (except as otherwise indicated) can be done with a simple pocket 

calculator. To take a concrete example, studying greatest common divisors (Chap

ter 5) by typing GCD [ M, NJ into a computer is akin to studying electronics by turn

ing on a television set. Admittedly, computers allow one to do examples with large 

numbers, and you will find such computer-generated examples scattered through 

the text, but our ultimate goal is always to understand concepts and relationships. 

So if I were forced to make a firm ruling, yea or nay, regarding computers, I would 

undoubtedly forbid their use. 

However, just as with any good rule, certain exceptions will be admitted. First, 

one of the best ways to understand a subject is to explain it to someone else; so if 

you know a little bit of how to write computer programs, you will find it extremely 

enlightening to explain to a computer how to perform the algorithms described 

in this book. In other words, don't rely on a canned computer package; do the 

programming yourself. Good candidates for such treatment are the Euclidean al

gorithm (Chapters 5-6), the RS A cryptosystem (Chapters 16-18), primality testing 

(Chapter 19), Quadratic Reciprocity (Chapter 22), writing numbers as sums of two 

squares (Chapters 24-25), continued fractions and solving Pell's equation (Chap

ters 47-48), and generating rational points on elliptic curves (Chapter 41). 

T he second exception to the "no computer rule" is generation of data. Dis

covery in number theory is usually based on experimentation, which may involve 

examining reams of data to try to distinguish underlying patterns. Computers are 

well suited to generating such data and also sometimes to assist in searching for 
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patterns, and I have no objection to their being used for these purposes. 

I have included a number of computer exercises and computer projects to en

courage you to use computers properly as tools to help understand and investigate 

the theory of numbers. Some of these exercises can be implemented on a small 

computer (or even a programmable calculator), while others require more sophis

ticated machines and/or programming languages. Exercises and projects requiring 

a computer are marked by the symbol ll. 
For many of the projects I have not given a precise formulation, since part of 

the project is to decide exactly what the user should input and exactly what form 

the output should take. Note that a good computer program must include all the 

following features: 

• Clearly written documentation explaining what the program does, how to use

it, what quantities it takes as input, and what quantities it returns as output.

• Extensive internal comments explaining how the program works.

• Complete error handling with informative error messages. For example, if

a = b = 0, then the gcd( a, b) routine should return the error message

"gcd ( 0, 0) is undefined" instead of going into an infinite loop or 

returning a "division by zero" error. 

As you write your own programs, try to make them user friendly and as versatile 

as possible, since ultimately you will want to link the pieces together to form your 

own package of number theoretic routines. 

The moral is that computers are useful as a tool for experimentation and that 

you can learn a lot by teaching a computer how to perform number theoretic calcu

lations, but when you are first learning a subject, a prepackaged computer program 

merely provides a crutch that prevents you from learning to walk on your own. 



Chapter 1 

What Is Number Theory? 

Number theory is the study of the set of positive whole numbers 

1, 2, 3, 4, 5, 6, 7, ... ' 

which are often called the set of natural numbers. We will especially want to study 

the relationships between different sorts of numbers. Since ancient times, people 

have separated the natural numbers into a variety of different types. Here are some 

familiar and not-so-familiar examples: 

odd 1, 3, 5, 7, 9, 11, ...

even 

square 

cube 

pnme 

composite 

1(modulo4) 

3 (modulo 4) 

triangular 

perfect 

2, 4, 6, 8, 10, ...

1, 4, 9, 16, 25, 36, .. .

1,8,27,64,125, .. .

2,3,5, 7,11,13,17,19,23,29,31, ...

4,6,8,9,10,12,14,15,16, ...

1,5,9,13,17,21,25, .. .

3,7,11,15,19,23,27, .. .

1,3,6,10,15,21, ...

6, 28, 496, ...

Fibonacci 1, 1, 2, 3, 5, 8, 13, 21, ...

Many of these types of numbers are undoubtedly already known to you. Oth

ers, such as the "modulo 4" numbers, may not be familiar. A number is said to be 

congruent to 1 (modulo 4) if it leaves a remainder of 1 when divided by 4, and sim

ilarly for the 3 (modulo 4) numbers. A number is called triangular if that number 

of pebbles can be arranged in a triangle, with one pebble at the top, two pebbles 

in the next row, and so on. The Fibonacci numbers are created by starting with 1 

and 1. Then, to get the next number in the list, just add the previous two. Finally, a 

number is perfect if the sum of all its divisors, other than itself, adds back up to the 
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original number. Thus, the numbers dividing 6 are 1, 2, and 3, and 1 + 2 + 3 = 6. 

Similarly, the divisors of 28 are 1, 2, 4, 7, and 14, and 

1 + 2 + 4 + 7 + 14 = 28. 

We will encounter all these types of numbers, and many others, in our excursion 

through the Theory of Numbers. 

Some Typical Number Theoretic Questions 

The main goal of number theory is to discover interesting and unexpected rela

tionships between different sorts of numbers and to prove that these relationships 

are true. In this section we will describe a few typical number theoretic problems, 

some of which we will eventually solve, some of which have known solutions too 

difficult for us to include, and some of which remain unsolved to this day. 

Sums of Squares I. Can the sum of two squares be a square? The answer is 

clearly "YES"; for example 32 + 42 
= 52 and 52 + 122 

= 132. These are 

examples of Pythagorean triples. We will describe all Pythagorean triples in 

Chapter 2. 

Sums of Higher Powers. Can the sum of two cubes be a cube? Can the sum 

of two fourth powers be a fourth power? In general, can the sum of two 

nth powers be an nth power? The answer is "NO." This famous problem, 

called Fermat's Last Theorem, was first posed by Pierre de Fermat in the 

seventeenth century, but was not completely solved until 1994 by Andrew 

Wiles. Wiles's proof uses sophisticated mathematical techniques that we 

will not be able to describe in detail, but in Chapter 30 we will prove that 

no fourth power is a sum of two fourth powers, and in Chapter 46 we will 

sketch some of the ideas that go into Wiles' s proof. 

Infinitude of Primes. A prime number is a number p whose only factors are 1 

andp. 

• Are there infinitely many prime numbers? 

• Are there infinitely many primes that are 1 modulo 4 numbers? 

• Are there infinitely many primes that are 3 modulo 4 numbers? 

The answer to all these questions is "YES." We will prove these facts in 

Chapters 12 and 21 and also discuss a much more general result proved by 

Lejeune Dirichlet in 1837. 
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Sums of Squares II. Which numbers are sums of two squares? It often turns out 

that questions of this sort are easier to answer first for primes, so we ask 

which (odd) prime numbers are a sum of two squares. For example, 

3=NO 
' 

13 = 22 + 32, 

29 = 22 + 52, 

5 = 12 + 22, 

17=12 +42, 

31 =NO, 

7=NO 
' 

19 =NO, 

37 = 12 + 62, 

11 =NO, 

23 =NO, 

Do you see a pattern? Possibly not, since this is only a short list, but a longer 

list leads to the conjecture that p is a sum of two squares if it is congruent 

to 1 (modulo 4). In other words, p is a sum of two squares if it leaves a 

remainder of 1 when divided by 4, and it is not a sum of two squares if it 

leaves a remainder of 3. We will prove that this is true in Chapter 24. 

Number Shapes. The square numbers are the numbers 1, 4, 9, 16, ... that can 

be arranged in the shape of a square. The triangular numbers are the num

bers 1, 3, 6, 10, ... that can be arranged in the shape of a triangle. The first 

few triangular and square numbers are illustrated in Figure 1.1 . 

• • • 

• • • • • • 

• • • • • • 

• • • • 

1+2=3 1+2+3=6 1+2 + 3 + 4 = 10 

Triangular numbers 

• • • • • • • • • 

• • • • • • • • • 

• • • • • • • 

• • • • 

22 = 4 32 = 9 42 = 16 
Square numbers 

Figure 1.1: Numbers That Form Interesting Shapes 

A natural question to ask is whether there are any triangular numbers that 

are also square numbers (other than 1 ). The answer is "YES," the smallest 

example being 

36 = 62 = 1+2 + 3 + 4 + 5 + 6 + 7 + 8. 

So we might ask whether there are more examples and, if so, are there in-
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finitely many? To search for examples, the following formula is helpful: 

n(n + 1) 
1+2+3+···+ (n-l)+n= 

2 
· 

There is an amusing anecdote associated with this formula. One day 

when the young Carl Friedrich Gauss (1777-1855) was in grade school, 

his teacher became so incensed with the class that he set them the task 

of adding up all the numbers from 1 to 100. As Gauss's classmates 

dutifully began to add, Gauss walked up to the teacher and presented the 

answer, 5050. The story goes that the teacher was neither impressed nor 

amused, but there's no record of what the next make-work assignment 

was! 

9 

There is an easy geometric way to verify Gauss's formula, which may be the 

way he discovered it himself. The idea is to take two triangles consisting of 

1 + 2 + · · · + n pebbles and fit them together with one additional diagonal 

of n + 1 pebbles. Figure 1.2 illustrates this idea for n = 6. 

7 

6 }:: 
5 3 

4 4 

3 5 

�� 
6 

( 1 + 2 + 3 + 4 + 5 + 6) + 7 + ( 6 + 5 + 4 + 3 + 2 + 1) = 72 

Figure 1.2: The Sum of the First n Integers 

In the figure, we have marked the extra n + 1 = 7 pebbles on the diagonal 

with black dots. The resulting square has sides consisting of n + 1 pebbles, 

so in mathematical terms we obtain the formula 

2(1+2+3+···+n)+ (n+l) = (n+1)2, 

two triangles + diagonal = square. 
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Now we can subtract n + 1 from each side and divide by 2 to get Gauss's 

formula. 

Twin Primes. In the list of primes it is sometimes true that consecutive odd num

bers are both prime. We have boxed these twin primes in the following list 

of primes less than 100: 

rn,m,m, 
@!],I 43 I, 47, 53, 

[!!],@], 
ill],[ill, 

[ill,[E], 23, �,QI], 37 

67, [TI], [ZI], 79, 83, 89, 97. 

Are there infinitely many twin primes? That is, are there infinitely many 

prime numbers p such that p + 2 is also a prime? At present, no one knows 

the answer to this question. 

Primes of the Form N2 + 1. If we list the numbers of the form N2 + 1 taking 

N = 1, 2, 3, ... , we find that some of them are prime. Of course, if N is 

odd, then N2 + 1 is even, so it won't be prime unless N = 1. So it's really 

only interesting to take even values of N. We've highlighted the primes in 

the following list: 

22 + 1 = 5 42 + 1 = 17 62 + 1 = 37 82 + 1 = 65 = 5 . 13 
102 + 1 = 101 122 + 1 = 145 = 5 . 29 142 + 1 = 197 

162 + 1 = 257 182 + 1 = 325 = 52 . 13 202 + 1 = 401. 

It looks like there are quite a few prime values, but if you take larger values 

of N you will find that they become much rarer. So we ask whether there are 

infinitely many primes of the form N2 + 1. Again, no one presently knows 

the answer to this question. 

We have now seen some of the types of questions that are studied in the Theory 

of Numbers. How does one attempt to answer these questions? The answer is that 

Number Theory is partly experimental and partly theoretical. The experimental 

part normally comes first; it leads to questions and suggests ways to answer them. 

The theoretical part follows; in this part one tries to devise an argument that gives 

a conclusive answer to the questions. In summary, here are the steps to follow: 

1. Accumulate data, usually numerical, but sometimes more abstract in nature. 

2. Examine the data and try to find patterns and relationships. 

3. Formulate conjectures (i.e., guesses) that explain the patterns and relation

ships. These are frequently given by formulas. 
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4. Test your conjectures by collecting additional data and checking whether the

new information fits your conjectures.

5. Devise an argument (i.e., a proof) that your conjectures are correct.

All five steps are important in number theory and in mathematics. More gener

ally, the scientific method always involves at least the first four steps. Be wary of 

any purported "scientist" who claims to have "proved" something using only the 

first three. Given any collection of data, it's generally not too difficult to devise 

numerous explanations. The true test of a scientific theory is its ability to predict 

the outcome of experiments that have not yet taken place. In other words, a scien

tific theory only becomes plausible when it has been tested against new data. This 

is true of all real science. In mathematics one requires the further step of a proof, 

that is, a logical sequence of assertions, starting from known facts and ending at 

the desired statement. 

Exercises 

1.1. The first two numbers that are both squares and triangles are 1 and 36. Find the
next one and, if possible, the one after that. Can you figure out an efficient way to find 
triangular-square numbers? Do you think that there are infinitely many? 

1.2. Try adding up the first few odd numbers and see if the numbers you get satisfy some 
sort of pattern. Once you find the pattern, express it as a formula. Give a geometric 
verification that your formula is correct. 

1.3. The consecutive odd numbers 3, 5, and 7 are all primes. Are there infinitely many 
such "prime triplets"? That is, are there infinitely many prime numbers p such that p + 2 
and p + 4 are also primes?

1.4. It is generally believed that infinitely many primes have the form N2 + 1, although
no one knows for sure. 

(a) Do you think that there are infinitely many primes of the form N2 - 1?

(b) Do you think that there are infinitely many primes of the form N2 - 2?

(c) How about of the form N2 - 3? How about N2 - 4?

(d) Which values of a do you think give infinitely many primes of the form N2 - a?

1.5. The following two lines indicate another way to derive the formula for the sum of the 
first n integers by rearranging the terms in the sum. Fill in the details. 

1+2 + 3 + · · · + n = (1 + n) + (2 + (n - 1)) + (3 + (n - 2)) + · · · 

= (1 + n) + (1 + n) + (1 + n) + · · · . 

How many copies of n + 1 are in there in the second line? You may need to consider the
cases of odd n and even n separately. If that's not clear, first try writing it out explicitly for 

n = 6 andn = 7.
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1.6. For each of the following statements, fill in the blank with an easy-to-check crite

non: 

(a) M is a triangular number if and only if 

__________ 

is an odd square. 

(b) N is an odd square if and only if 

__________ 

is a triangular number. 

(c) Prove that your criteria in (a) and (b) are correct. 



Chapter 2 

Pythagorean Triples 

The Pythagorean Theorem, that "beloved" formula of all high school geometry 

students, says that the sum of the squares of the sides of a right triangle equals the 

square of the hypotenuse. In symbols, 

a2 + b2 == c2 b 

a 

Figure 2.1: A Pythagorean Triangle 

Since we're interested in number theory, that is, the theory of the natural num

bers, we will ask whether there are any Pythagorean triangles all of whose sides are 

natural numbers. There are many such triangles. The most famous has sides 3, 4, 

and 5. Here are the first few examples: 

32 + 42 = 52
, 52 + 122 = 132

, 82+152 = 172
, 282 + 452 = 532.

The study of these Pythagorean triples began long before the time of Pythago

ras. There are Babylonian tablets that contain lists of parts of such triples, including 

quite large ones, indicating that the Babylonians probably had a systematic method 

for producing them. Even more amazing is the fact that the Babylonians may have 
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used their lists of Pythagorean triples as primitive trigonometric tables. Pythago

rean triples were also used in ancient Egypt. For example, a rough-and-ready way 

to produce a right angle is to take a piece of string, mark it into 12 equal segments, 

tie it into a loop, and hold it taut in the form of a 3-4-5 triangle, as illustrated in Fig

ure 2.2. This provides an inexpensive right angle tool for use on small construction 

projects (such as marking property boundaries or building pyramids). 

String with 12 knots String pulled taut 

Figure 2.2: Using a knotted string to create a right triangle 

The Babylonians and Egyptians had practical reasons for studying Pythagor

ean triples. Do such practical reasons still exist? For this particular problem, the 

answer is "probably not." However, there is at least one good reason to study 

Pythagorean triples, and it's the same reason why it is worthwhile studying the art 

of Rembrandt and the music of Beethoven. There is a beauty to the ways in which 

numbers interact with one another, just as there is a beauty in the composition of a 

painting or a symphony. To appreciate this beauty, one has to be willing to expend 

a certain amount of mental energy. But the end result is well worth the effort. Our 

goal in this book is to understand and appreciate some truly beautiful mathematics, 

to learn how this mathematics was discovered and proved, and maybe even to make 

some original contributions of our own. 

Enough blathering, you are undoubtedly thinking. Let's get to the real stuff. 

Our first naive question is whether there are infinitely many Pythagorean triples, 

that is, triples of natural numbers (a, b, c) satisfying the equation a2 + b2 = c2• The 

answer is "YES" for a very silly reason. If we take a Pythagorean triple (a, b, c) 
and multiply it by some other number d, then we obtain a new Pythagorean triple 

(da, db, de). This is true because 

Clearly these new Pythagorean triples are not very interesting. So we will concen

trate our attention on triples with no common factors. We will even give them a 

name: 
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A primitive Pythagorean triple (or PPT for short) is a triple of num

bers (a, b, c) such that a, b, and c have no common factors1 and 

satisfy 

15 

Recall our checklist from Chapter 1. The first step is to accumulate some data. 

I used a computer to substitute in values for a and b and checked if a2 + b2 is a 

square. Here are some primitive Pythagorean triples that I found: 

(3, 4, 5), 
(20, 21, 29), 
(28, 45, 53)' 

(5, 12, 13)' 
(9, 40, 41), 

(33, 56, 65)' 

(8, 15, 17), 
(12, 35, 37)' 
(16, 63, 65). 

(7, 24, 25), 
(11, 60, 61), 

A few conclusions can easily be drawn even from such a short list. For example, it 

certainly looks like one of a and b is odd and the other even. It also seems that c is 

always odd. 

It's not hard to prove that these conjectures are correct. First, if a and b are both 

even, then c would also be even. This means that a, b, and c would have a common 

factor of 2, so the triple would not be primitive. Next, suppose that a and b are 

both odd, which means that c would have to be even. This means that there are 

numbers x, y, and z such that 

a= 2x + 1, b = 2y + 1, and c = 2z. 

We can substitute these into the equation a2 + b2 = c2 to get 

Now divide by 2, 

(2x + 1)2 + (2y + 1)2 = (2z)2 , 

4x2 + 4x + 4y2 + 4y + 2 = 4z2 . 

2x2 + 2x + 2y2 + 2y + 1 = 2z2 . 

This last equation says that an odd number is equal to an even number, which is 

impossible, so a and b cannot both be odd. Since we've just checked that they 

cannot both be even and cannot both be odd, it must be true that one is even and 

1 A common factor of a, b, and c is a number d such that each of a, b, and c is a multiple of d . For 

example, 3 is a common factor of 30, 42, and 105, since 30 = 3 · 10, 42 = 3 · 14, and 105 = 3 · 35, 

and indeed it is their largest common factor. On the other hand, the numbers 10, 12, and 15 have 

no common factor (other than 1). Since our goal in this chapter is to explore some interesting and 

beautiful number theory without getting bogged down in formalities, we will use common factors 

and divisibility informally and trust our intuition. In Chapter 5 we will return to these questions and 

develop the theory of divisibility more carefully. 
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the other is odd. It's then obvious from the equation a2 + b2 
= c2 that c is also 

odd. 
We can always switch a and b, so our problem now is to find all solutions in 

natural numbers to the equation 

a2 + b2 
= c2 

{a odd, 
with b even, 

a, b, c having no common factors. 

The tools that we use are factorization and divisibility. 

Our first observation is that if (a, b, c) is a primitive Pythagorean triple, then 

we can factor 
a2 

= c2 - b2 
= ( c - b) ( c + b). 

Here are a few examples from the list given earlier, where note that we always 
take a to be odd and b to be even: 

32 
= 52 - 42 

= (5 - 4) (5 + 4) = 1 . 9, 

152 
= 172 - 82 

= (17 - 8) (17 + 8) = 9. 25 , 

352 
= 372 - 122 

= (37 - 12)(37 + 12) = 25 . 49, 

332 
= 652 - 562 

= (65 - 56) (65 + 56) = 9. 121. 

It looks like c - b and c + b are themselves always squares. We check this obser
vation with a couple more examples: 

212 
= 292 - 202 

= (29 - 20)(29 + 20) = 9. 49, 

632 
= 652 - 162 

= (65 - 16) (65 + 16) = 49. 81. 

How can we prove that c - b and c + b are squares? Another observation ap
parent from our list of examples is that c - b and c + b seem to have no common 
factors. We can prove this last assertion as follows. Suppose that d is a common 
factor of c - b and c + b; that is, d divides both c - b and c + b. Then d also divides 

( c + b) + ( c - b) = 2c and ( c + b) - ( c - b) = 2b. 

Thus, d divides 2b and 2c. But b and c have no common factor because we are 
assuming that (a, b, c) is a primitive Pythagorean triple. So d must equal 1 or 2. 
But d also divides ( c - b) ( c + b) = a2, and a is odd, so d must be 1. In other 
words, the only number dividing both c - b and c + b is 1, so c - b and c + b have 

no common factor. 
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We now know that c - b and c + b are positive integers having no common 
factor, that their product is a square since ( c - b) ( c + b) = a2. The only way that 
this can happen is if c - b and c +bare themselves squares.2 So we can write 

c + b = s2 and c - b = t2 ' 

where s > t > 1 are odd integers with no common factors. Solving these two 
equations for b and c yields 

and then 

c= 
s2 + t2 

2 
and 

s2 - t2 
b= ---

2 ' 

a= y'(c - b)(c + b) = st. 

We have (almost) finished our first proof! The following theorem records our 
accomplishment. 

Theorem 2.1 (Pythagorean Triples Theorem). We will get every primitive Pytha
gorean triple (a, b, c) with a odd and b even by using the formulas 

a= st, 
s2 - t2 

b= ---
2 

c= 
s2 + t2 

2 

where s > t > 1 are chosen to be any odd integers with no common factors. 

Why did we say that we have "almost" finished the proof? We have shown 
that if (a, b, c) is a PPT with a odd, then there are odd integers s > t > 1 with 
no common factors so that a, b, and c are given by the stated formulas. But we 
still need to check that these formulas always give a PPT. We first use a little bit of 
algebra to show that the formulas give a Pythagorean triple. Thus 

s4 + 2s2t2 + t4 
4 

We also need to check that st, 822t2, and 82!t2 have no common factors. This 
is most easily accomplished using an important property of prime numbers, so 
we postpone the proof until Chapter 7, where you will finish the argument (Exer
cise 7.3). 

2This is intuitively clear if you consider the factorization of c - b and c + b into primes, since 

the primes in the factorization of c - b will be distinct from the primes in the factorization of c + b. 

However, the existence and uniqueness of the factorization into primes is by no means as obvious as 

it appears. We will discuss this further in Chapter 7. 
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For example, taking t = 1 in Theorem 2.1 gives a triple ( s
, 

8221
, 

82i1) 
whose b and c entries differ by 1. This explains many of the examples that we 

listed. The following table gives all possible triples with s < 9. 

b= 
82 - t2 82 + t2 

s t a= st c= 
2 2 

3 1 3 4 5 

5 1 5 12 13 

7 1 7 24 25 

9 1 9 40 41 

5 3 15 8 17 

7 3 21 20 29 

7 5 35 12 37 

9 5 45 28 53 

9 7 63 16 65 

A Notational Interlude 

Mathematicians have created certain standard notations as a shorthand for various 

quantities. We will keep our use of such notation to a minimum, but there are a 

few symbols that are so commonly used and are so useful that it is worthwhile to 

introduce them here. They are 

N =the set of natural numbers= 1, 2, 3, 4, ... 
, 

Z =the set of integers= ... - 3, -2, -1, 0, 1, 2, 3, ... , 
Q =the set of rational numbers (i.e., fractions). 

In addition, mathematicians often use IR to denote the real numbers and C for the 

complex numbers, but we will not need these. Why were these letters chosen? 

The choice of N, IR, and C needs no explanation. The letter Z for the set of inte

gers comes from the German word "Zahlen," which means numbers. Similarly, Q 
comes from the German "Quotient" (which is the same as the English word). We 

will also use the standard mathematical symbol E to mean "is an element of the 

set." So, for example, a E N means that a is a natural number, and x E Q means 

that x is a rational number. 

Exercises 

2.1. (a) We showed that in any primitive Pythagorean triple (a, b, c), either a orb is even. 
Use the same sort of argument to show that either a orb must be a multiple of 3. 
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(b) By examining the above list of primitive Pythagorean triples, make a guess about 
when a, b, or c is a multiple of 5. Try to show that your guess is correct. 

2.2. A nonzero integer dis said to divide an integer m if m = dk for some number k. 
Show that if d divides both m and n, then d also divides m - n and m + n. 

2.3. For each of the following questions, begin by compiling some data; next examine the 
data and formulate a conjecture; and finally try to prove that your conjecture is correct. (But 
don't worry if you can't solve every part of this problem; some parts are quite difficult.) 

(a) Which odd numbers a can appear in a primitive Pythagorean triple (a, b, c)? 

(b) Which even numbers b can appear in a primitive Pythagorean triple (a, b, c)? 

(c) Which numbers c can appear in a primitive Pythagorean triple (a, b, c)? 

2.4. In our list of examples are the two primitive Pythagorean triples 

332 + 562 = 652 and 

Find at least one more example of two primitive Pythagorean triples with the same value 
of c. Can you find three primitive Pythagorean triples with the same c? Can you find more 
than three? 

2.5. In Chapter 1 we saw that the nth triangular number Tn is given by the formula 

n (n + 1) 
Tn = 1 + 2 + 3 + · · · + n = 

2 
. 

The first few triangular numbers are 1, 3, 6, and 10. In the list of the first few Pythagorean 
triples (a, b, c), we find (3, 4, 5), (5, 12, 13), (7, 24, 25), and (9, 40, 41). Notice that in each 
case, the value of b is four times a triangular number. 

(a) Find a primitive Pythagorean triple (a, b, c) with b = 4T5. Do the same for b = 4T6 
and for b = 4T7. 

(b) Do you think that for every triangular number T n, there is a primitive Pythagorean 
triple (a, b, c) with b = 4Tn? If you believe that this is true, then prove it. Otherwise, 
find some triangular number for which it is not true. 

2.6. If you look at the table of primitive Pythagorean triples in this chapter, you will see 
many triples in which c is 2 greater than a. For example, the triples (3, 4, 5), (15, 8, 17), 
(35, 12, 37), and (63, 16, 65) all have this property. 

(a) Find two more primitive Pythagorean triples (a, b, c) having c = a + 2. 

(b) Find a primitive Pythagorean triple (a, b, c) having c =a+ 2 and c > 1000. 

(c) Try to find a formula that describes all primitive Pythagorean triples (a, b, c) having 
c =a+ 2. 

2.7. For each primitive Pythagorean triple (a, b, c) in the table in this chapter, compute the 
quantity 2c - 2a. Do these values seem to have some special form? Try to prove that your 
observation is true for all primitive Pythagorean triples. 

2.8. Let m and n be numbers that differ by 2, and write the sum l + -1 as a fraction in1 1 3 1 1 8 m n 
lowest terms. For example, 2 + 4 = 4 and 3 + 5 = 15 · 
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(a) Compute the next three examples. 

20 

(b) Examine the numerators and denominators of the fractions in (a) and compare them 

with the table of Pythagorean triples on page 18. Formulate a conjecture about such 

fractions. 

(c) Prove that your conjecture is correct. 

2.9. (a) Read about the Babylonian number system and write a short description, includ

ing the symbols for the numbers 1to10 and the multiples of 10 from 20 to 50. 

(b) Read about the Babylonian tablet called Plimpton 322 and write a brief report, in

cluding its approximate date of origin. 

(c) The second and third columns of Plimpton 322 give pairs of integers (a, c) having 

the property that c2 - a2 is a perfect square. Convert some of these pairs from Baby

lonian numbers to decimal numbers and compute the value of b so that (a, b, c) is a 

Pythagorean triple. 



Chapter 3 

Pythagorean Triples 
and the Unit Circle 

In the previous chapter we described all solutions to 

a
2 

+ b2
= c2

in whole numbers a, b, c. If we divide this equation by c2, we obtain

a 2 ( b) 2 

( c ) + 
c 

= 1. 

So the pair of rational numbers (a/ c, b / c) is a solution to the equation 

x2 
+ y2

= 1. 

Everyone knows what the equation x2 
+ y2 

= 1 looks like: It is a circle C of
radius 1 with center at (0, 0). We are going to use the geometry of the circle C to 
find all the points on C whose xy-coordinates are rational numbers. Notice that 
the circle has four obvious points with rational coordinates, (±1, 0) and (0, ±1). 
Suppose that we take any (rational) number m and look at the line L going through 
the point (-1, 0) and having slope m. (See Figure 3.1.) The line L is given by the 
equation 

L: y = m(x + 1) (point-slope formula). 

It is clear from the picture that the intersection C n L consists of exactly two points, 
and one of those points is ( -1, 0). We want to find the other one. 

To find the intersection of C and L, we need to solve the equations 

x2 
+ y2

= 1 and y = m(x +  1) 
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L =line with 

slope m 

c 

Figure 3.1: The Intersection of a Circle and a Line 

22 

for x and y. Substituting the second equation into the first and simplifying, we 

need to solve 

x2+(m(x+1))2=1 
x2 + m 2 ( x2 + 2x + 1) = 1 

(m2 + l)x2 + 2m2x + (m2 - 1) = 0. 

This is just a quadratic equation, so we could use the quadratic formula to solve 

for x. But there is a much easier way to find the solution. We know that x = -1 
must be a solution, since the point ( -1, 0) is on both C and L. This means that we 

can divide the quadratic polynomial by x + 1 to find the other root: 

(m2+1)x+(m2- 1) 
x + 1) (m2 + l)x2 + 2m2x + (m2 - 1) . 

So the other root is the solution of (m2 + l)x + (m2 - 1) = 0, which means 

that 
1- m2 

x=---

l+m2· 
Then we substitute this value of x into the equation y = m ( x + 1) of the line L to 

find they-coordinate, 

(1- m2 ) 2m 
y=m(x+l) =m 

2 
+1 = 

1 2
. 

l+m +m 

Thus, for every rational number m we get a solution in rational numbers 

( 1 - m2 2m ) 
to the equation x2 + y2 = 1. 

1+m2'1 +m2 
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On the other hand, if we have a solution ( x1, Y1) in rational numbers, then the 

slope of the line through ( x 1, y1) and ( -1, 0) will be a rational number. So by 

taking all possible values for m, the process we have described will yield every so

lution to x2 + y2 = 1 in rational numbers [except for ( -1, 0), which corresponds 

to a vertical line having slope "m = oo"]. We summarize our results in the follow

ing theorem. 

Theorem 3.1. Every point on the circle 

x2 + y2 = 1 

whose coordinates are rational numbers can be obtained from the formula 

( 1-m2 2m ) (x,y)= 
l+m2'1+m2 

by substituting in rational numbers for m [except for the point ( -1, 0 )which is the 
limiting value as m ---+ oo ]. 

How is this formula for rational points on a circle related to our formula for 

Pythagorean triples? If we write the rational number m as a fraction v / u, then our 

formula becomes 

( x' Y) = ( �: � �: ' u 2
2
:

v

v2
) 

' 

and clearing denominators gives the Pythagorean triple 

(a, b, c) = (u2 - v2, 2u v, u2 + v2) . 

This is another way of describing Pythagorean triples, although to describe only 

the primitive ones would require some restrictions on u and v. You can relate this 

description to the formula in Chapter 2 by setting 

s+t U= --
2 

Exercises 

and 
s-t 

v- -- 2 
. 

3.1. As we have just seen, we get every Pythagorean triple (a, b, c) with b even from the 

formula 

(a,b,c) = (u2 -v2,2uv,u2 +v2) 
by substituting in different integers for u and v. For example, ( u, v) 
smallest triple (3, 4, 5). 

(2, 1) gives the 



[Chap. 3] Pythagorean Triples and the Unit Circle 24 

(a) If u and v have a common factor, explain why (a, b, c) will not be a primitive Pytha

gorean triple. 

(b) Find an example of integers u > v > 0 that do not have a common factor, yet the

Pythagorean triple ( u2 - v2, 2uv, u2 + v2) is not primitive.

(c) Make a table of the Pythagorean triples that arise when you substitute in all values 

of u and v with 1 :::; v < u :::; 10.

(d) Using your table from (c), find some simple conditions on u and v that ensure that

the Pythagorean triple ( u2 - v2, 2uv, u2 + v2) is primitive.

(e) Prove that your conditions in (d) really work. 

3.2. (a) Use the lines through the point ( 1, 1) to describe all the points on the circle 

x2 + y2 = 2 

whose coordinates are rational numbers. 

(b) What goes wrong if you try to apply the same procedure to find all the points on the 

circle x2 + y2 = 3 with rational coordinates?

3.3. Find a formula for all the points on the hyperbola 

x2 - y2 = 1 

whose coordinates are rational numbers. [Hint. Take the line through the point (-1, 0) 
having rational slope m and find a formula in terms of m for the second point where the

line intersects the hyperbola.] 

3.4. The curve 

y2 = x3 + 8 

contains the points ( 1, -3) and ( - 7 / 4, 13 / 8). The line through these two points intersects 

the curve in exactly one other point. Find this third point. Can you explain why the 

coordinates of this third point are rational numbers? 

3.5. Numbers that are both square and triangular numbers were introduced in Chapter 1, 

and you studied them in Exercise 1.1. 

(a) Show that every square-triangular number can be described using the solutions in 
positive integers to the equation x2 - 2y2 = 1. [Hint. Rearrange the equation m2 = 

�(n2 + n) .]

(b) The curve x2 - 2y2 = 1 includes the point (1, 0). Let L be the line through (1, 0) 
having slope m. Find the other point where L intersects the curve.

(c) Suppose that you take m to equal m = v/u, where (u, v) is a solution to u2 - 2v2 = 

1. Show that the other point that you found in (b) has integer coordinates. Further,

changing the signs of the coordinates if necessary, show that you get a solution to 

x2 - 2y2 = 1 in positive integers.

(d) Starting with the solution (3, 2) to x2 - 2y2 = 1, apply (b) and (c) repeatedly to find

several more solutions to x2 - 2y2 = 1. Then use those solutions to find additional

examples of square-triangular numbers. 
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(e) Prove that this procedure leads to infinitely many different square-triangular numbers. 

(f) Prove that every square-triangular number can be constructed in this way. (This part 

is very difficult. Don't worry if you can't solve it.) 



Chapter 4 

Sums of Higher Powers 

and Fermat's Last Theorem 

In the previous two chapters we discovered that the equation 

a2 + b2 
= c2 

has lots of solutions in whole numbers a, b, c. It is natural to ask whether there are

solutions when the exponent 2 is replaced by a higher power. For example, do the

equations 

a3 + b3 = c3 and a4 + b4 = c4 and a5 + b5 = c5 

have solutions in nonzero integers a, b, c? The answer is "NO." Sometime around

1637, Pierre de Fermat showed that there is no solution for exponent 4. During

the eighteenth and nineteenth centuries, Carl Friedrich Gauss and Leonhard Euler 

showed that there is no solution for exponent 3 and Lejeune Dirichlet and Adrien

Legendre dealt with the exponent 5. The general problem of showing that the

equation 

has no solutions in positive integers if n > 3 is known as "Fermat's Last Theo

rem." It has attained almost cult status in the 350 years since Fermat scribbled the

following assertion in the margin of one of his books: 

It is impossible to separate a cube into two cubes, or a fourth power into two 

fourth powers, or in general any power higher than the second into powers of 
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like degree. I have discovered a truly remarkable proof which this margin is 
too small to contain. 1 

27 

Few mathematicians today believe that Fermat had a valid proof of his "The

orem," which is called his Last Theorem because it was the last of his assertions 

that remained unproved. The history of Fermat's Last Theorem is fascinating, with 

literally hundreds of mathematicians making important contributions. Even a brief 

summary could easily fill a book. This is not our intent in this volume, so we will 

be content with a few brief remarks. 

One of the first general results on Fermat's Last Theorem, as opposed to verifi

cation for specific exponents n, was given by Sophie Germain in 1823. She proved 

that if both p and 2p + 1 are primes then the equation aP + bP = cP has no so

lutions in integers a, b, c with p not dividing the product abc. A later result of a 

similar nature, due to A. Wieferich in 1909, is that the same conclusion is true if 

the quantity 2P - 2 is not divisible by p2. Meanwhile, during the latter part of 

the nineteenth century a number of mathematicians, including Richard Dedekind, 

Leopold Kronecker, and especially Ernst Kummer, developed a new field of math

ematics called algebraic number theory and used their theory to prove Fermat's 

Last Theorem for many exponents, although still only a finite list. Then, in 1985, 

L.M. Adleman, D.R. Heath-Brown, and E. Fouvry used a refinement of Germain's 

criterion together with difficult analytic estimates to prove that there are infinitely 

many primes p such that aP + bP = cP has no solutions with p not dividing abc. 

Sophie Germain (1776-1831) Sophie Germain was a French mathemati
cian who did important work in number theory and differential equations. 
She is best known for her work on Fermat's Last Theorem, where she gave 
a simple criterion that suffices to show that the equation aP + bP = cP has 
no solutions with abc not divisible by p. She also did work on acoustics and 
elasticity, especially the theory of vibrating plates. As a mathematics student, 
she was forced to take correspondence courses from the Ecole Polytechnique 
in Paris, since they did not accept women as students. For a similar reason, 
she began her extensive correspondence with Gauss using the pseudonym 
Monsieur Le Blanc; but when she eventually revealed her identity, Gauss 
was delighted and sufficiently impressed with her work to recommend her 
for an honorary degree at the University of Gottingen. 

In 1986 Gerhard Frey suggested a new line of attack on Fermat's problem using 

a notion called modularity. Frey's idea was refined by Jean-Pierre Serre, and Ken 

1Translated from the Latin: "Cubum autem in duos cubos, aut quadrato quadratum in duos 
quadrato quadratos, & generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem 
nominis fas est divide re; cujus rei demonstrationem mirabilem sane detexi. Hane marginis exiguitas 
non caperet." 
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Ribet subsequently proved that if the Modularity Conjecture is true, then Fermat's 

Last Theorem is true. Precisely, Ribet proved that if every semistable elliptic curve2

is modular3 then Fermat's Last Theorem is true. The Modularity Conjecture, which

asserts that every rational elliptic curve is modular, was at that time a conjecture 

originally formulated by Goro Shimura and Yutaka Taniyama. Finally, in 1994, 

Andrew Wiles announced a proof that every semistable rational elliptic curve is 

modular, thereby completing the proof of Fermat's 350-year-old claim. Wiles's 

proof, which is a tour de force using the vast machinery of modem number theory 

and algebraic geometry, is far too complicated for us to describe in detail, but we 

will try to convey the flavor of his proof in Chapter 46. 

Few mathematical or scientific discoveries arise in a vacuum. Even Sir Isaac 

Newton, the transcendent genius not noted for his modesty, wrote that "If I have 

seen further, it is by standing on the shoulders of giants." Here is a list of some 

of the giants, all contemporary mathematicians, whose work either directly or in

directly contributed to Wiles's brilliant proof. The diversified nationalities high

light the international character of modem mathematics. In alphabetical order: 

Spencer Bloch (USA), Henri Carayol (France), John Coates (Australia), Pierre 

Deligne (Belgium), Ehud de Shalit (Israel), Fred Diamond (USA), Gerd Falt

ings (Germany), Matthias Flach (Germany), Gerhard Frey (Germany), Alexander 

Grothendieck (France), Y ves Hellegouarch (France), Haruzo Hida (Japan), Ken

kichi Iwasawa (Japan), Kazuya Kato (Japan), Nick Katz (USA), V.A. Kolyvagin 

(Russia), Ernst Kunz (Germany), Robert Langlands (Canada), Hendrik Lenstra 

(The Netherlands), Wen-Ch'ing Winnie Li (USA), Barry Mazur (USA), Andre 

Neron (France), Ravi Ramakrishna (USA), Michel Raynaud (France), Ken Ri

bet (USA), Karl Rubin (USA), Jean-Pierre Serre (France), Goro Shimura (Japan), 

Yutaka Taniyama (Japan), John Tate (USA), Richard Taylor (England), Jacques 

Tilouine (France), Jerry Tunnell (USA), Andre Weil (France), Andrew Wiles (Eng

land). 

Exercises 

4.1. Write a one- to two-page biography on one (or more) of the following mathematicians. 

Be sure to describe their mathematical achievements, especially in number theory, and 

some details of their lives. Also include a paragraph putting them into an historical context 

2 An elliptic curve is a certain sort of curve, not an ellipse, given by an equation of the form 

y2 
= x3 + ax2 + bx + c, where a, b, c are integers. The elliptic curve is semistable if the quantities 

3b - a2 and 27c - 9ab + 2a3 have no common factors other than 2 and satisfy a few other technical

conditions. We study elliptic curves in Chapters 41-46. 

3 An elliptic curve is called modular if there is a map to it from another special sort of curve called 

a modular curve. 
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by describing the times (scientifically, politically, socially, etc.) during which they lived 
and worked: (a) Niels Abel, (b) Claude Gaspar Bachet de Meziriac, (c) Richard Dedekind, 
( d) Diophantus of Alexandria, ( e) Lejeune Dirichlet, (f) Eratosthenes, (g) Euclid of Alexan
dria, (h) Leonhard Euler, (i) Pierre de Fermat, G) Leonardo Fibonacci, (k) Carl Friedrich 
Gauss, (1) Sophie Germain, (m) David Hilbert, (n) Carl Jacobi, (o) Leopold Kronecker, 
(p) Ernst Kummer, (q) Joseph-Louis Lagrange, (r) Adrien-Marie Legendre, (s) Joseph Li
ouville, (t) Marin Mersenne, (u) Hermann Minkowski, (v) Sir Isaac Newton, (w) Pythago
ras, (x) Srinivasa Ramanujan, (y) Bernhard Riemann, (z) P.L. Tchebychef (also spelled 
Chebychev). 

4.2. The equation a2 + b2 = c2 has lots of solutions in positive integers, while the equation
a3 + b3 = c3 has no solutions in positive integers. This exercise asks you to look for 
solutions to the equation 

a3 + b3 = c
2

in integers c > b > a > 1. 

(a) The equation (*) has the solution (a, b, c) = (2, 2, 4). Find three more solutions in 
positive integers. [Hint. Look for solutions of the form (a, b, c) = (xz, yz, z2) .  Not
every choice of x, y, z will work, of course, so you'll need to figure out which ones 
do work.] 

(b) If (A, B, C) is a solution to(*) and n is any integer, show that (n2 A, n2 B, n3C) is
also a solution to ( *). We will say that a solution (a, b, c) to ( *) is primitive if it does 
not look like ( n2 A, n2 B, n3C) for any n > 2.

(c) Write down four different primitive solutions to ( * ). [That is, redo (a) using only 
primitive solutions.] 

(d) The solution (2, 2, 4) has a= b. Find all primitive solutions that have a= b. 
(e) Find a primitive solution to ( *) that has a > 10000. 



Chapter 5 

Divisibility and the Greatest 
Common Divisor 

As we have already seen in our study of Pythagorean triples, the notions of divis
ibility and factorizations are important tools in number theory. In this chapter we 
will look at these ideas more closely. 

Suppose that m and n are integers with m -/=- 0. We say that m divides n if n is 
a multiple of m, that is, if there is an integer k such that n = mk. If m divides n, 

we write m i n. Similarly, if m does not divide n, then we write m f n. For example, 

316 and 121132, since 6 = 3 · 2 and 132 = 12 · 11. 

The divisors of 6 are 1, 2, 3, and 6. On the other hand, 5 f 7, since no integer 
multiple of 5 is equal to 7. A number that divides n is called a divisor of n. 

If we are given two numbers, we can look for common divisors, that is, num
bers that divide both of them. For example, 4 is a common divisor of 12 and 20, 

since 4112 and 4120. Notice that 4 is the largest common divisor of 12 and 20. 

Similarly, 3 is a common divisor of 18 and 30, but it is not the largest, since 6 

is also a common divisor. The largest common divisor of two numbers is an ex

tremely important quantity that will frequently appear during our number theoretic 
excursions. 

The greatest common divisor of two numbers a and b (not both zero) 
is the largest number that divides both of them. It is denoted by 

gcd(a, b). If gcd(a, b) = 1, we say that a and bare relatively prime. 

Two examples that we mentioned above are 

gcd(12, 20) = 4 and gcd(18, 30) = 6. 
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Another example is 

gcd(225, 120) = 15. 

31 

We can check that this answer is correct by factoring 225 = 32 · 52 and 120 = 

23 · 3 · 5, but, in general, factoring a and bis not an efficient way to compute their 

greatest common divisor. 1 
The most efficient method known for finding the greatest common divisors of 

two numbers is called the Euclidean algorithm. It consists of doing a sequence of 

divisions with remainder until the remainder is zero. We will illustrate with two 

examples before describing the general method. 

As our first example, we will compute gcd(36, 132). The first step is to di

vide 132 by 36, which gives a quotient of 3 and a remainder of 24. We write this 

as 

132 = 3 x 36 + 24. 

The next step is to take 36 and divide it by the remainder 24 from the previous step. 

This gives 

36 = 1 x 24 + 12. 

Next we divide 24 by 12, and we find a remainder of 0, 

24 = 2 x 12 + 0. 

The Euclidean algorithm says that as soon as you get a remainder of 0, the re

mainder from the previous step is the greatest common divisor of the original two 

numbers. So in this case we find that gcd(132, 36) = 12. 
Let's do a larger example. We will compute 

gcd(1160718174,316258250). 

Our reason for doing a large example like this is to help convince you that the 

Euclidean algorithm gives a far more efficient way to compute gcd's than factor

ization. We begin by dividing 1160718174 by 316258250, which gives 3 with a 

remainder of 211943424. Next we take 316258250 and divide it by 211943424. 
This process continues until we get a remainder of 0. The calculations are given in 

1 An even less efficient way to compute the greatest common divisor of a and b is the method 
taught to my daughter by her fourth grade teacher, who recommended that the students make com
plete lists of all the divisors of a and b and then pick out the largest number that appears on both 
lists! 
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the following table: 

1160718174 = 3 x 316258250+ 211943424 
316258250 = 1 x 211943424 + 104314826 
211943424 = 2 x 104314826 + 3313772 
104314826 = 31 x 3313772 + 1587894 

3313772 = 2 x 1587894 + 137984 

1587894 = 11 x 137984 + 70070 

137984 = 1 x 70070 + 67914 

70070 = 1 x 67914 + 2156 

67914 = 31 x 2156 + I 101s I+--- gcd 
2156 = 2 x 1078 + 0 

32 

Notice how at each step we divide a number A by a number B to get a quotient Q 
and a remainder R. In other words, 

A= Q x B+R. 

Then at the next step we replace our old A and B with the numbers B and R and 

continue the process until we get a remainder of 0. At that point, the remainder R 

from the previous step is the greatest common divisor of our original two numbers. 

So the above calculation shows that 

gcd(1160718174, 316258250) = 1078. 

We can partly check our calculation (always a good idea) by verifying that 1078 is 

indeed a common divisor. Thus 

1160718174 = 1078 x 1076733 and 316258250 = 1078 x 293375. 

There is one more practical matter to be mentioned before we undertake a 

theoretical analysis of the Euclidean algorithm. If we are given A and B, how can 

we find the quotient Q and the remainder R? Of course, you can always use long 

division, but that can be time consuming and subject to arithmetic errors if A and B 
are large. A pleasant alternative is to find a calculator or computer program that will 

automatically compute Q and R for you. However, even if you are only equipped 

with an inexpensive calculator, there is an easy three-step method to find Q and R. 

Method to Compute Q and Ron a Calculator So That A= Bx Q + R 

1. Use the calculator to divide A by B. You get a number with decimals. 

2. Discard all the digits to the right of the decimal point. This gives Q. 
3. To find R, use the formula R =A - Bx Q. 
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For example, suppose that A= 12345 and B = 417. Then A/ B = 29.6043 ... , 
so Q = 29 and R = 12345 - 417 · 29 = 252. 

We're now ready to analyze the Euclidean algorithm. The general method 

looks like 
a= qi x b + Ti 
b = q2 x Ti + T2 

Ti = q3 x T2 + T3 
T2 = q4 x T3 + T 4 

Tn-3 = qn-i X Tn-2 + Tn-i 
Tn-2 = qn X Tn-i + I Tn I+--- gcd 

Tn-i = qn+iTn + 0 

If we let To = b and T -i = a, then every line looks like 

Why is the last nonzero remainder T n a common divisor of a and b? We start 

from the bottom and work our way up. The last line T n-i = qn+ i T n shows that T n 
divides T n-i · Then the previous line 

shows that Tn divides Tn-2, since it divides both Tn-i and Tn. Now looking at the 

line above that, we already know that Tn divides both Tn-i and Tn-2, so we find 

that Tn also divides Tn-3· Moving up line by line, when we reach the second line we 

will already know that T n divides T2 and Ti. Then the second line b = q2 x Ti + T2 
tells us that Tn divides b. Finally, we move up to the top line and use the fact 

that T n divides both Ti and b to conclude that T n also divides a. This completes our 

verification that the last nonzero remainder rn is a common divisor of a and b. 
But why is T n the greatest common divisor of a and b? Suppose that d is any 

common divisor of a and b. We will work our way back down the list of equations. 

So from the first equation a = qi x b + Ti and the fact that d divides both a and b, 
we see that d also divides Ti. Then the second equation b = q2Ti + T2 shows us 

that d must divide T2. Continuing down line by line, at each stage we will know 

that d divides the previous two remainders Ti-i and Ti, and then the current line 

Ti-i = qi+i x Ti+ Ti+i will tell us that d also divides the next remainder Ti+i· 
Eventually, we reach the penultimate line Tn-2 = qn x Tn-i + Tn, at which point 

we conclude that d divides T n. So we have shown that if d is any common divisor 

of a and b then d will divide T n. Therefore, T n must be the greatest common divisor 

of a and b. 
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This completes our verification that the Euclidean algorithm actually com

putes the greatest common divisor, a fact of sufficient importance to be officially 

recorded. 

Theorem S.l (Euclidean Algorithm). To compute the greatest common divisor of 
two numbers a and b, let r -1 = a, let ro = b, and compute successive quotients 
and remainders 

ri-1 = qi+l x ri + ri+l 

for i = 0, 1, 2, . . .  until some remainder rn+l is 0. The last nonzero remainder rn 

is then the greatest common divisor of a and b. 

There remains the question of why the Euclidean algorithm always finishes. In 

other words, we know that the last nonzero remainder will be the desired gcd, but 

how do we know that we ever get a remainder that does equal O? This is not a 

silly question, since it is easy to give algorithms that do not terminate; and there 

are even very simple algorithms for which it is not known whether or not they 

always terminate. Fortunately, it is easy to see that the Euclidean algorithm always 

terminates. The reason is simple. Each time we compute a quotient with remainder, 

A= Q x B+R, 

the remainder will be between 0 and B - 1. This is clear, since if R > B, then we 

can add one more onto the quotient Q and subtract B from R. So the successive 

remainders in the Euclidean algorithm continually decrease: 

b = ro > r1 > r2 > r3 > · · · . 

But all the remainders are greater than or equal to 0, so we have a strictly decreasing 

sequence of nonnegative integers. Eventually, we must reach a remainder that 

equals O; in fact, it is clear that we will reach a remainder of 0 in at most b steps. 

Fortunately, the Euclidean algorithm is far more efficient than this. You will show 

in the exercises that the number of steps in the Euclidean algorithm is at most seven 

times the number of digits in b. So, on a computer, it is quite feasible to compute 

gcd(a, b) when a and b have hundreds or even thousands of digits! 

Exercises 

5.1. Use the Euclidean algorithm to compute each of the following gcd's. 
(a) gcd(12345,67890) (b) gcd(54321,9876) 

5.2. Il Write a program to compute the greatest common divisor gcd( a, b) of two inte

gers a and b. Your program should work even if one of a orb is zero. Make sure that you 

don't go into an infinite loop if a and b are both zero! 
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S.3. Let b = ro, r1, r2, ... be the successive remainders in the Euclidean algorithm applied 
to a and b. Show that after every two steps, the remainder is reduced by at least one half. 
In other words, verify that 

1 
r·+2 < -r· i 

2 
i for every i = 0, 1, 2, .... 

Conclude that the Euclidean algorithm terminates in at most 2 log2 ( b) steps, where log2 is 
the logarithm to the base 2. In particular, show that the number of steps is at most seven 
times the number of digits in b. [Hint. What is the value oflog2 ( 10 )?] 

S.4. A number L is called a common multiple of m and n if both m and n divide L.

The smallest such L is called the least common multiple of m and n and is denoted by 
LCM(m, n) . For example, LCM(3, 7) = 21 and LCM(12, 66) = 132. 

(a) Find the following least common multiples. 
(i) LCM(8, 12) (ii) LCM(20, 30) (iii) LCM(51, 68) (iv) LCM(23, 18). 

(b) For each of the LCMs that you computed in (a), compare the value of LCM(m, n) 
to the values of m, n, and gcd(m, n) . Try to find a relationship. 

(c) Give an argument proving that the relationship you found is correct for all m and n. 

(d) Use your result in (b) to compute LCM(301337, 307829). 

(e) Suppose that gcd(m, n) = 18 and LCM(m, n) = 720. Find m and n. Is there more 
than one possibility? If so, find all of them. 

S.S. The "3n + 1 algorithm" works as follows. Start with any number n. If n is even, 
divide it by 2. If n is odd, replace it with 3n + 1. Repeat. So, for example, if we start 
with 5, we get the list of numbers 

5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, ... ' 

and if we start with 7, we get 

7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1,4,2,1, .... 

Notice that if we ever get to 1 the list just continues to repeat with 4, 2, 1 's. In general, one 
of the following two possibilities will occur:2 

(i) We may end up repeating some number a that appeared earlier in our list, in which 
case the block of numbers between the two a's will repeat indefinitely. In this case 
we say that the algorithm terminates at the last nonrepeated value, and the number 
of distinct entries in the list is called the length of the algorithm. For example, the 
algorithm terminates at 1 for both 5 and 7. The length of the algorithm for 5 is 6, 
and the length of the algorithm for 7 is 1 7.

(ii) We may never repeat the same number, in which case we say that the algorithm does 
not terminate. 

2There is, of course, a third possibility. We may get tired of computing and just stop working, in
which case one might say that the algorithm terminates due to exhaustion of the computer! 
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(a) Find the length and terminating value of the 3n+ 1 algorithm for each of the following

starting values of n: 

(i) n = 21 (ii) n = 13 (iii) n = 31 

(b) Do some further experimentation and try to decide whether the 3n + 1 algorithm

always terminates and, if so, at what value(s) it terminates. 

(c) Assuming that the algorithm terminates at 1, let L(n) be the length of the algorithm

for starting value n. For example, L(5) = 6 and L(7) = 17. Show that if n = 8k + 4
with k > 1, then L( n) = L( n + 1). [Hint. What does the algorithm do to the starting

values 8k + 4 and 8k + 5?] 
(d) Show that if n = 128k + 28 then L(n) = L(n + 1) = L(n + 2). 
(e) Find some other conditions, similar to those in (c) and (d), for which consecutive 

values of n have the same length. (It might be helpful to begin by using the next

exercise to accumulate some data.) 

5.6. 

d 

Write a program to implement the 3n + 1 algorithm described in the previous

exercise. The user will input n and your program should return the length L ( n) and the

terminating value T ( n) of the 3n + 1 algorithm. Use your program to create a table giving

the length and terminating value for all starting values 1 < n < 100. 



Chapter 6 

Linear Equations and the 
Greatest Common Divisor 

Given two whole numbers a and b, we are going to look at all the possible numbers 

we can get by adding a multiple of a to a multiple of b. In other words, we will 

consider all numbers obtained from the formula 

ax + by 

when we substitute all possible integers for x and y. Note that we are going to 

allow both positive and negative values for x and y. For example, we could take 

a = 42 and b = 30. Some of the values of ax + by for this a and b are given in the

following table: 

11 x = -3 I x = -2 I x = -1 I x = o I x = 1 I x = 2 I x = 3 I 
y = -3 -216 -174 -132 -90 -48 -6 36 
y = -2 -186 -144 -102 -60 -18 24 66 
y = -1 -156 -114 -72 -30 12 54 96 
y= 0 -126 -84 -42 0 42 84 126 

y= 1 -96 -54 -12 30 72 114 156 

y= 2 -66 -24 18 60 102 144 186 

y= 3 -36 6 48 90 132 174 216 

Table of Values of 42x + 30y 

Our first observation is that every entry in the table is divisible by 6. This is not 

surprising, since both 42 and 30 are divisible by 6, so every number of the form 

42x + 30y = 6(7x + 5y) is a multiple of 6. More generally, it is clear that ev

ery number of the form ax + by is divisible by gcd( a, b ) , since both a and b are 

divisible by gcd(a, b). 
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A second observation, which is somewhat more surprising, is that the greatest 

common divisor of 42 and 30, which is 6, actually appears in our table. Thus from 

the table we see that 

42 · (-2) + 30 · 3 = 6 = gcd(42,30). 

Further examples suggest the following conclusion: 

The smallest positive value of 

ax+by 
is equal to gcd( a, b). 

There are many ways to prove that this is true. We will take a constructive ap

proach, via the Euclidean algorithm, which has the advantage of giving a proce

dure for finding the appropriate values of x and y. In other words, we are going to 

describe a method of finding integers x and y that are solutions to the equation 

ax+ by= gcd(a, b). 

Since, as we have already observed, every number ax+ by is divisible by gcd(a, b), 
it will follow that the smallest positive value of ax + by is precisely gcd( a, b). 

How might we solve the equation ax+ by = gcd(a, b)? If a and bare small, 

we might be able to guess a solution. For example, the equation 

lOx + 35y = 5 

has the solution x = -3 and y = 1, and the equation 

7x + lly = 1 

has the solution x = -3 and y = 2. We also notice that there can be more than 

one solution, since x = 8 and y = -5 is also a solution to 7 x + 11 y = 1. 

However, if a and b are large, neither guesswork nor trial and error is going to 

be helpful. We are going to start by illustrating the Euclidean algorithm method 

for solving ax + by = gcd( a, b) with a particular example. So we are going to try 

to solve 

22x + 60y = gcd(22, 60). 

The first step is to perform the Euclidean algorithm to compute the gcd. We find 

60 = 2 x 22 + 16 

22 = 1x16 + 6 
16 = 2x6+ 4 

6= lx4+ 2 
4= 2x2+ 0 
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This shows that gcd(22, 60) = 2, a fact that is clear without recourse to the Eu

clidean algorithm. However, the Euclidean algorithm computation is important 

because we're going to use the intermediate quotients and remainders to solve the 

equation 22x + 60y = 2. The first step is to rewrite the first equation as 

16 =a - 2b, where we let a =  60 and b = 22. 

We next substitute this value into the 16 appearing in the second equation. This 

gives (remember that b = 22) 

b = 1 x 16 + 6 = 1 x (a - 2b) + 6. 

Rearranging this equation to isolate the remainder 6 yields 

6 = b - (a - 2b) =-a+ 3b. 

Now substitute the values 16 and 6 into the next equation, 16 = 2 x 6 + 4: 

a - 2b = 16 = 2 x 6 + 4 = 2(-a + 3b) + 4. 

Again we isolate the remainder 4, yielding 

4 = (a - 2b) - 2(-a + 3b) = 3a - 8b. 

Finally, we use the equation 6 = 1 x 4 + 2 to get 

-a+ 3b = 6 = 1 x 4 + 2 = 1 x (3a - 8b) + 2. 

Rearranging this equation gives the desired solution 

-4a + llb = 2. 

(We should check our solution: -4 x 60 + 11 x 22 = -240 + 242 = 2.) 
We can summarize the above computation in the following efficient tabular 

form. Note that the left-hand equations are the Euclidean algorithm, and the right

hand equations compute the solution to ax+ by = gcd(a, b). 

a =  2xb+ 16 
b = 1x16 + 6 

16 = 2 x 6 + 4 

6 =  lx4+ 2 

4 =  2x2+ 0 

16 =a - 2b 
6 = b - 1x16 

= b - 1 x (a - 2b) 
=-a+ 3b 

4 = 16 - 2 x 6 
= (a - 2b) - 2 x (-a + 3b) 

= 3a - 8b 
2 =6 - lx4 

= (-a+ 3b) - 1 x (3a - 8b) 

= -4a + llb 
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Why does this method work? As the following table makes clear, we start with 

the first two lines of the Euclidean algorithm, which involve the quantities a and b, 
and work our way down. 

a= q1b + ri 
b = q2r1 + r2 

ri =a - qib 
r2 = b - q2r1 

= b - q2 (a - qi b) 
= -q2a + (1 + qiq2)b 

r3 = r1 - q3r2 
=(a- qib) - q3(-q2a + (1 + qiq2)b) 
= (1 + q2q3)a - (q1 + q3 + qiq2q3)b 

As we move from line to line, we will continually be forming equations that look 

like 

latest remainder = some multiple of a plus some multiple of b. 

Eventually, we get down to the last nonzero remainder, which we know is equal to 

gcd(a, b), and this gives the desired solution to the equation gcd(a, b) =ax+ by. 
A larger example with a= 12453 and b = 2347 is given in tabular form on top 

of the next page. As before, the left-hand side is the Euclidean algorithm and the 

right-hand side solves ax+ by = gcd(a, b). We see that gcd(12453, 2347) = 1 
and that the equation 12453x+2347y = 1 has the solution (x, y) = (304, -1613). 

We now know that the equation 

ax+ by= gcd(a, b) 

always has a solution in integers x and y. The final topic we discuss in this section 

is the question of how many solutions it has, and how to describe all the solutions. 

Let's start with the case that a and bare relatively prime, that is, gcd( a, b) = 1, and 

suppose that (x1, y1) is a solution to the equation 

ax+ by= 1. 

We can create additional solutions by subtracting a multiple of b from x1 and 

adding the same multiple of a onto y1. In other words, for any integer k we obtain 

a new solution ( x1 + kb, Yl - ka) .1 We can check that this is indeed a solution by 

computing 

a(x1 +kb)+ b(y1 - ka) = ax1 + akb + by1 - bka = ax1 + by1 = 1. 

1 Geometrically, we are starting from the known point ( x1, y1 ) on the line ax + by = 1 and using 

the fact that the line has slope -a/b to find new points (x1 + t, y1 - (a/b)t). To get new points with 

integer coordinates, we need to let t be a multiple of b. Substituting t = kb gives the new integer 

solution (x1 +kb, y1 - ka). 
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a= 5 x b + 718 
b = 3 x 718 + 193 

718 = 3 x 193 + 139 

193 = 1 x 139 + 54 

139 = 2 x 54 + 31 

54 = 1 x 31 + 23 

31=1 x 23 + 8 

23 = 2 x 8 + 7 

8=1x7 +1 

7=7xl +o 

718 =a - 5b 
193 = b - 3 x 718 

= b - 3 x (a - 5b) 
= -3a + l6b 

139 = 718 - 3 x 193 
=(a - 5b) - 3 x (-3a+ l6b) 
= lOa - 53b 

54 = 193 - 139 
= (-3a + l6b) - (lOa - 53b) 
= -l3a + 69b 

31 = 139 - 2 x 54 
= (lOa - 53b) - 2 x (-13a + 69b) 
= 36a - 191b 

23 = 54 - 31 
= -l3a + 69b - (36a - 191b) 
= -49a + 260b 

8 = 31 - 23 
= 36a - 191b - (-49a + 260b) 
= 85a - 451b 

7 = 23 - 2 x 8 
= (-49a + 260b) - 2 x (85a - 451b) 
= -219a + 1162b 

1=8 - 7  
= 85a - 451b - (-219a + 1162b) 
= 304a - 1613b 
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So, for example, if we start with the solution ( -1, 2) to 5x + 3y = 1, we obtain 

new solutions (-1+3k, 2 - 5k). Note that the integer k is allowed to be positive, 

negative, or zero. Putting in particular values of k gives the solutions 

... (-13, 22), (-10, 17), (-7, 12), (-4, 7), (-1, 2), 
(2, -3), (5, -8), (8, -13), (11, -18) . . . . 

Still looking at the case that gcd( a, b) = 1, we can show that this procedure 

gives all possible solutions. Suppose that we are given two solutions (x1, Y1) and 

( x2, Y2) to the equation ax + by = 1. In other words, 

and 

We are going to multiply the first equation by y2, multiply the second equation 

by y1, and subtract. This will eliminate b and, after a little bit of algebra, we are 
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left with 

ax1y2 - ax2y1 = Y2 - YI· 
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Similarly, if we multiply the first equation by x2, multiply the second equation 

by xi, and subtract, we find that 

So if we let k = X2Y1 - x1y2, then we find that 

and Y2 = Y1 - ka. 

This means that the second solution ( x2, y2) is obtained from the first solution 

( x1, YI) by adding a multiple of b onto x1 and subtracting the same multiple of a 
from YI· So every solution to ax+ by= 1 can be obtained from the initial solu

tion (x1, y1) by substituting different values of k into (x1 +kb, YI - ka). 
What happens if gcd( a, b) > 1? To make the formulas look a little bit simpler, 

we will let g = gcd(a, b). We know from the Euclidean algorithm method that 

there is at least one solution (x1, y1) to the equation 

ax+ by= g. 

But g divides both a and b, so (x1, Y1) is a solution to the simpler equation 

a b 
-x + -y = 1. 
g g 

Now our earlier work applies, so we know that every other solution can be obtained 

by substituting values for k in the formula 

(xi+ k · �, Y1 - k · : ) . 
This completes our description of the solutions to the equation ax + by = g, as 

summarized in the following theorem. 

Theorem 6.1 (Linear Equation Theorem). Let a and b be nonzero integers, and let 
g = gcd( a, b ). The equation 

ax+ by= g 

always has a solution (x1, Y1) in integers, and this solution can be found by the 
Euclidean algorithm method described earlier. Then every solution to the equation 
can be obtained by substituting integers k into the formula 

(xi+ k · �, Y1 - k · : ) . 
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For example, we saw that the equation 

60x + 22y = gcd(60, 22) = 2 

43 

has the solution x = -4, y = 11. Then our Linear Equation Theorem says that 

every solution is obtained from the formula 

(-4+ llk, 11 - 30k) with k any integer. 

In particular, if we want a solution with x positive, then we can take k = 1, which 

gives the smallest such solution (x, y) = (7, -19) . 
In this chapter we have shown that the equation 

ax+ by= gcd(a, b) 

always has a solution. This fact is extremely important for both theoretical and 

practical reasons, and we will be using it repeatedly in our number theoretic in

vestigations. For example, we will need to solve the equation ax + by = 1 when 

we study cryptography in Chapter 18. And in the next chapter we will use this 

equation for our theoretical study of factorization of numbers into primes. 

Exercises 

6.1. (a) Find a solution in integers to the equation 

12345x + 67890y = gcd(12345, 67890). 

(b) Find a solution in integers to the equation 

54321x + 9876y = gcd(54321, 9876). 

6.2. Describe all integer solutions to each of the following equations. 

(a) 105x + 121y = 1 
(b) 12345x+67890y = gcd(12345,67890) 
(c) 54321x+9876y = gcd(54321,9876) 

6.3. � The method for solving ax + by = gcd( a, b) described in this chapter involves 

a considerable amount of manipulation and back substitution. This exercise describes an 

alternative way to compute x and y that is especially easy to implement on a computer. 

(a) Show that the algorithm described in Figure 6.1 computes the greatest common divi

sor g of the positive integers a and b, together with a solution ( x, y) in integers to the 

equation ax+ by= gcd(a, b). 
(b) Implement the algorithm on a computer using the computer language of your choice. 
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( c) Use your program to compute g = gcd (a, b) and integer solutions to ax + by = g for 

the following pairs (a, b). 
(i) (19789, 23548) (ii) (31875, 8387) (iii) (22241739, 19848039) 

(d) What happens to your program if b = O? Fix the program so that it deals with this 

case correctly. 

( e) For later applications it is useful to have a solution with x > 0. Modify your program 

so that it always returns a solution with x > 0. [Hint. If (x, y) is a solution, then so 

is ( x + b, y - a).] 

(1) Set x = 1, g = a, v = 0, and w = b. 
(2) If w = 0 then set y = (g - ax)/b and return the values (g, x, y). 

(3) Divide g by w with remainder, g = qw + t, with 0 < t < w. 

( 4) Set s = x - qv.

(5) Set (x,g) = (v,w). 
( 6) Set ( v, w) = ( s, t). 

(7) Go to Step (2). 

Figure 6.1: Efficient algorithm to solve ax + by= gcd(a, b) 

6.4. (a) Find integers x, y, and z that satisfy the equation 

6x + 15y + 20z = 1. 

(b) Under what conditions on a, b, c is it true that the equation 

ax+ by+ cz = 1 

has a solution? Describe a general method of finding a solution when one exists. 

( c) Use your method from (b) to find a solution in integers to the equation 

155x + 34ly + 385z = 1. 

6.5. Suppose that gcd( a, b) = 1. Prove that for every integer c, the equation ax + by = c 
has a solution in integers x and y. [Hint. Find a solution to au+ bv = 1 and multiply by c.] 
Find a solution to 37x + 47y = 103. Try to make x and y as small as possible. 

6.6. Sometimes we are only interested in solutions to ax + by = c using nonnegative val

ues for x and y. 
(a) Explain why the equation 3x + 5y = 4 has no solutions with x 2 0 and y 2 0. 

(b) Make a list of some of the numbers of the form 3x + 5y with x 2 0 and y > 0. Make 

a conjecture as to which values are not possible. Then prove that your conjecture is 

correct. 
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(c) For each of the following values of (a, b), find the largest number that is not of the 

form ax + by with x > 0 and y > 0. 

(i) (a, b) = (3, 7) (ii) (a,b) = (5,7) (iii) (a, b) = ( 4, 11). 

(d) Let gcd(a, b) = 1. Using your results from (c), find a conjectural formula in terms

of a and b for the largest number that is not of the form ax + by with x > 0 and 

y > O? Check your conjecture for at least two more values of (a, b). 
(e) Prove that your conjectural formula in (d) is correct. 

(f) Try to generalize this problem to sums of three terms ax+ by+ cz with x > 0, 

y > 0, and z > 0. For example, what is the largest number that is not of the form 

6x + lOy + l5z with nonnegative x, y, z? 



Chapter 7 

Factorization and the 

Fundamental Theorem 

of Arithmetic 

A prime number is a number p > 2 whose only (positive) divisors are 1 and p. 
Numbers m > 2 that are not primes are called composite numbers. For example, 

prime numbers 

composite numbers 

2,3,5,7,11,13,17,19,23,29,31, .. .

4,6,8,9,10,12,14,15,16,18,20, .. .

Prime numbers are characterized by the numbers by which they are divisible; that 

is, they are defined by the property that they are only divisible by 1 and by them

selves. So it is not immediately clear that primes numbers should have special 

properties that involve the numbers that they divide. Thus the following fact con

cerning prime numbers is both nonobvious and important. 1

Lemma 7.1. Let p be a prime number, and suppose that p divides the product ab. 
Then either p divides a or p divides b (or p divides both a and b).2

Proof We are given that p divides the product ab. If p divides a, we are done, so 

we may as well assume that p does not divide a. Now consider what gcd(p, a) can 

be. It divides p, so it is either 1 or p. It also divides a, so it isn't p, since we have 

assumed that p does not divide a. Thus, gcd (p, a) must equal 1.

1 A lemma is a result that is used as a stepping stone for proving other results. 
2You may say that this lemma is obvious if we look at the prime factorizations of a and b. How

ever, the fact that a number can be factored into a product of primes in exactly one way is itself a 
nonobvious fact. We will discuss this further later in this chapter. 
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Now we use the Linear Equation Theorem (Chapter 6) with the numbers p 
and a. The Linear Equation Theorem says that we can find integers x and y that 

solve the equation 

px + ay = l. 

[Note that we are using the fact that gcd(p, a) = l.] Now multiply both sides of 

the equation by b. This gives 

pbx + aby = b. 

Certainly pbx is divisible by p, and also aby is divisible by p, since we know that p 
divides ab. It follows that p divides the sum 

pbx + aby, 

so p divides b. This completes the proof of the lemma. 3 D 

The lemma says that if a prime divides a product ab, it must divide one of 

the factors. Notice that this is a special property of prime numbers; it is not true 

for composite numbers. For example, 6 divides the product 15 · 14, but 6 divides 

neither 15 nor 14. It is not hard to extend the lemma to products with more than 

two factors. 

Theorem 7.2 (Prime Divisibility Property). Let p be a prime number, and sup

pose that p divides the product aia2 · · · ar. Then p divides at least one of the 

factors ai, a2, ... , ar. 

Proof If p divides ai, we're done. If not, we apply the lemma to the product 

to conclude that p must divide a2a3 · · · ar. In other words, we are applying the 

lemma with a= ai and b = a2a3 · · · ar. We know that plab, so if pf a, the lemma 

says that p must divide b. 
So now we know that p divides a2a3 · · · ar. If p divides a2, we're done. If 

not, we apply the lemma to the product a2 ( a3 · · · ar) to conclude that p must di

vide a3 · · · ar. Continuing in this fashion, we must eventually find some ai that is 

divisible by p. D 

3When we are proving a statement, we use a little box D to indicate that we have completed the 

proof. Some books instead use QED to indicate the end of a proof. The letters QED stand for the 

Latin phrase Quod erat demonstrandum, which roughly means "that which was to be proved." This 

in turn comes from the Greek phrase W7rEp Eba bf.l�m, which appears in Euclid's Elements. 
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Later in this chapter we are going to use the Prime Divisibility Property to 

prove that every positive integer can be factored as a product of prime numbers 

in essentially one way. Unfortunately, this important fact is so familiar to most 

readers that they will question why it requires a proof. So before giving the proof, 

I want to try to convince you that unique factorization into primes is far from being 

obvious. For this purpose, I invite you to leave the familiar behind and enter the4 

Even Number World 
(popularly known as the "IE-Zone") 

Imagine yourself in a world where the only numbers that are known are the even 

numbers. So, in this world, the only numbers that exist are 

IE= { ... , -8, -6, -4, -2, 0, 2, 4, 6, 8, 10, ... }. 

Notice that in the IE-Zone we can add, subtract, and multiply numbers just as usual, 

since the sum, difference, and product of even numbers are again even numbers. 

We can also talk about divisibility. We say that a number m IE-divides a number n 

if there is a number k with n = mk. But remember that we're now in the IE-Zone, 

so the word "number" means an even number. For example, 6 IE-divides 12, since 

12 = 6 · 2; but 6 does not IE-divide 18, since there is no (even) number k satisfying 

18 = 6k. 

We can also talk about primes. We say that an (even) number p is an IE-prime if 

it is not divisible by any (even) numbers. (In the IE-Zone, a number is not divisible 

by itself!) For example, here are some IE-primes: 

2, 6, 10, 14, 18, 22, 26, 30. 

Recall the lemma we proved above for ordinary numbers. We showed that if 

a prime p divides a product ab then either p divides a or p divides b. Now move 

to the IE-Zone and consider the IE-prime 6 and the numbers a = 10 and b = 18. 

The number 6 IE-divides ab= 180, since 180 = 6 · 30; but 6 IE-divides neither 10 

nor 18. So our "obvious" lemma is not true here in the IE-Zone! 

There are other "self-evident facts" that are untrue in the IE-Zone. For exam

ple, consider the fact that every number can be factored as a product of primes in 

exactly one way. (Of course, rearranging the order of the factors is not considered 

a different factorization.) It's not hard to show, even in the IE-Zone, that every 

(even) number can be written as a product of IE-primes. But consider the following 

factorizations: 

180 = 6 . 30 = 10 . 18. 
4Since this book is not a multimedia product, you'll have to use your imagination to supply the 

appropriate Twilight Zone music. 
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Notice that all of the numbers 6, 30, 10, and 18 are IE-primes. This means that 180 

can be written as a product of IE-primes in two fundamentally different ways! In 

fact, there is even a third way to write it as a product of IE-primes, 

180 = 2. 90. 

We are going to leave the IE-Zone now and return to the familiar world where 

odd and even numbers live together in peace and harmony. But we hope that our 

excursion into the IE-Zone has convinced you that facts that seem obvious require 

a healthy dose of skepticism. Especially, any "fact" that "must be true" because it 

is very familiar or because it is frequently proclaimed to be true is a fact that needs 

the most careful scrutiny. 5 

IE-Zone Border Crossing-Welcome Back Home 

Everyone "knows" that a positive integer can be factored into a product of primes 

in exactly one way. But our visit to the IE-Zone provides convincing evidence that 

this obvious assertion requires a careful proof. 

Theorem 7 .3 (The Fundamental Theorem of Arithmetic). Every integer n > 2 can 

be factored into a product of primes 

n = P1P2 ···Pr 

in exactly one way. 

Before we commence the proof of the Fundamental Theorem of Arithmetic, a 

few comments are in order. First, if n itself is prime, then we just write n = n and 

consider this to be a product consisting of a single number. Second, when we write 

n = P1P2 · · · Pr, we do not mean that Pl, P2, ... , Pr have to be different primes. 

For example, we would write 300 = 2 · 2 · 3 · 5 · 5. Third, when we say that n can 

be written as a product in exactly one way, we do not consider rearrangement of 

the factors to be a new factorization. For example, 12 = 2 · 2 · 3 and 12 = 2 · 3 · 2 

and 12 = 3 · 2 · 2, but all these are treated as the same factorization. 

Proof The Fundamental Theorem of Arithmetic really contains two assertions. 

Assertion 1. The number n can be factored into a product of primes in some way. 

Assertion 2. There is only one such factorization (aside from rearranging the fac

tors). 

5The principle that well-known and frequently asserted "facts" should be carefully scrutinized 

also applies to endeavors far removed from mathematics. Politics and journalism come to mind, and 

the reader will undoubtedly be able to add many others to the list. 
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We begin with Assertion 1. We are going to give a proof by induction.6 Don't 
let this scare you, it just means that first we'll verify the assertion for n = 2, and 
then for n = 3, and then for n = 4, and so on. We begin by observing that 2 = 2 
and 3 = 3 and 4 = 22, so each of these numbers can be written as a product of 
primes. This verifies Assertion 1 for n = 2, 3, 4. Now suppose that we've verified 
Assertion 1 for every n up to some number, call it N. This means we know that 
every number n < N can be factored into a product of primes. Now we'll check 
that the same is true of N + 1. 

There are two possibilities. First, N + 1 may already be prime, in which case 
it is its own factorization into primes. Second, N + 1 may be composite, which 
means that it can be factored as N + 1 = ni n2 with 2 < ni, n2 < N. But we 
know Assertion 1 is true for n1 and n2, since they are both less than or equal to N. 

This means that both ni and n2 can be written as a product of primes, say 

ni = P1P2 ···Pr and 

Multiplying these two products together gives 

so N + 1 can be factored into a product of primes. This means that Assertion 1 is 
true for N + 1. 

To recapitulate, we have shown that if Assertion 1 is true for all numbers less 
than or equal to N, then it is also true for N + 1. But we have checked it is true 
for 2, 3, and 4, so taking N = 4, we see that it is also true for 5. But then we can 
take N = 5 to conclude that it is true for 6. Taking N = 6, we see that it is true for 
N = 7, and so on. Since we can continue this process indefinitely, it follows that 
Assertion 1 is true for every integer. 

Next we tackle Assertion 2. It is possible to give an induction proof for this 

assertion, too, but we will proceed more directly. Suppose that we are able to 

factor n as a product of primes in two ways, say 

We need to check that the factorizations are the same, possibly after rearranging 
the order of the factors. We first observe that P1ln, so Pl lq1q2 · · · q8• The Prime 
Divisibility Property proved earlier in this chapter tells us that p1 must divide (at 
least) one of the q/s, so if we rearrange the q/s, we can arrange matters so that 
P1lq1. But qi is also a prime number, so its only divisors are 1 and qi. Therefore, 
we must have Pl = qi. 

6We'll discuss induction more formally in Chapter 26. 
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Now we cancel Pl (which is the same as qi) from both sides of the equation. 
This gives the equation 

Briefly repeating the same argument, we note that p2 divides the left-hand side of 
this equation, so p2 divides the right-hand side, and hence by the Prime Divisibility 
Property, P2 divides one of the q/s. After rearranging the factors, we get P2 lq2, 
and then the fact that q2 is prime means that P2 = q2. This allows us to cancel P2 
(which equals q2) to obtain the new equation 

We can continue in this fashion until either all the Pi 's or all the qi 's are gone. 
But if all the Pi 's are gone, then the left-hand side of the equation equals 1, so there 
cannot be any q/s left, either. Similarly, if the q/s are all gone, then the p/s must 
all be gone. In other words, the number of p/s must be the same as the number 
of qi 's. To recapitulate, we have shown that if 

where all the Pi' s and qi' s are primes, then r = s, and we can rearrange the qi' s so 
that 

Pl = qi and P2 = q2 and p3 = q3 and and Pr= qs. 

This completes the proof that there is only one way to write n as a product of 
pnmes. D 

The Fundamental Theorem of Arithmetic says that every integer n > 2 can be 

written as a product of prime numbers. Suppose we are given a particular integer n. 

As a practical matter, how can we write it as a product of primes? If n is fairly small 
(for example, n = 180) we can factor it by inspection, 

180 = 2 . 90 = 2 . 2 . 45 = 2 . 2 . 3 . 15 = 2 . 2 . 3 . 3 . 5. 

If n is larger (for example, n = 9105293) it may be more difficult to find a 
factorization. One method is to try dividing n by primes 2, 3, 5, 7, 11, ... until we 
find a divisor. For n = 9105293, we find after some work that the smallest prime 
dividing n is 37. We factor out the 37, 

9105293 = 37 . 246089, 
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and continue checking 37 , 41, 43, ... to find a prime that divides 246089. We find 

that 431246089, since 246089 = 43·5723. And so on until we factor 5723 = 59·97 , 
where we recognize that 59 and 97 are both primes. This gives the complete prime 

factorization 

9105293 = 37 . 43. 59. 97. 

If n is not itself prime, then there must be a prime p < fa that divides n. 

To see why this is true, we observe that if p is the smallest prime that divides n, 

then n = pm with m > p, and hence n = pm > p
2

. Taking the square root of 

both sides yields fa > p. This gives the following foolproof method for writing 

any number n as a product of primes: 

To write n as a product of primes, try dividing it by every number (or 

just every prime number) 2, 3, ... that is less than or equal to fa. If 

you find no numbers that divide n, then n itself is prime. Otherwise, 

the first divisor that you find will be a prime p. Factor n = pm and 

repeat the process with m. 

This procedure, although fairly inefficient, works fine on a computer for num

bers that are moderately large, say up to 10 digits. But how about a number like 

n = 10128 + 1? If n turns out to be prime, we won't find out until we've checked 

fa � 1064 possible divisors. This is completely infeasible. If we could check 

1,000,000,000 (that's one billion) possible divisors each second, it would still take 

approximately 3 · 1048 years! This leads to the following two closely related ques

tions: 

Question 1. How can we tell if a given number n is prime or composite? 

Question 2. If n is composite, how can we factor it into primes? 

Although it might seem that these questions are the same, it turns out that 

Question 1 is much easier to answer than Question 2. We will later see how to 

write down large numbers that we know are composite, even though we will be 

unable to write down any of their factors. In a similar fashion, we will be able 

to find very large prime numbers p and q such that, if we were to send someone 

the value of the product n = pq, they would be unable to factor n to retrieve the 

numbers p and q. This curious fact, that it is very easy to multiply two numbers but 

very difficult to factor the product, lies at the heart of a remarkable application of 

number theory to the creation of very secure codes. We will describe these codes 

in Chapter 18. 
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Exercises 
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7.1. Suppose that gcd( a, b) = 1, and suppose further that a divides the product be. Show

that a must divide c. 

7.2. Suppose that gcd(a, b) = 1, and suppose further that a divides c and that b divides c. 

Show that the product ab must divide c. 

7.3. Lets and t be odd integers withs > t � 1 and gcd(s, t) = 1. Prove that the three

numbers 

st, 
82 -t2 

2 
and 

82 + t2 

2 
are pairwise relatively prime; that is, each pair of them is relatively prime. This fact was 

needed to complete the proof of the Pythagorean triples theorem (Theorem 2.1 on page 17). 

[Hint. Assume that there is a common prime factor and use the fact (Lemma 7.1) that if a 

prime divides a product, then it divides one of the factors.] 

7.4. Give a proof by induction of each of the following formulas. [Notice that (a) is the 

formula that we proved in Chapter 1 using a geometric argument and that ( c) is the first n 
terms of the geometric series.] 

n(n + 1) 
(a) 1 + 2 + 3 + · + n = 

2 

(b) 1 2 + 22 + 32 + ... + n 2
= 

n(n + 1)(2n + 1)
6 

1 -an+l 
(c) 1 +a+ a2 + a3 +···+an = (a "I= 1) 

l-a 
1 1 1 1 n-1 

(d) G2
+ 

2. 3 
+ 

3 · 4 
+ ... + 

(n -l)n
= 

-n-

7 .5. This exercise asks you to continue the investigation of the IE-Zone. Remember as you 

work that for the purposes of this exercise, odd numbers do not exist! 

(a) Describe all IE-primes.

(b) Show that every even number can be factored as a product of IE-primes. [Hint. Mimic

our proof of this fact for ordinary numbers.] 

(c) We saw that 180 has three different factorizations as a product of IE-primes. Find the

smallest number that has two different factorizations as a product of IE-primes. Is 180 
the smallest number with three factorizations? Find the smallest number with four 

factorizations. 

(d) The number 12 has only one factorization as a product of IE-primes: 12 = 2 · 6. (As

usual, we consider 2 · 6 and 6 · 2 to be the same factorization.) Describe all even

numbers that have only one factorization as a product of IE-primes. 

7.6. Welcome to M-World, where the only numbers that exist are positive integers that 

leave a remainder of 1 when divided by 4. In other words, the only M-numbers that exist

are 

{1, 5, 9, 13, 17, 21, ... }. 
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(Another description is that these are the numbers of the form 4t + 1 fort = 0, 1, 2, . . . . )

In the M-World, we cannot add numbers, but we can multiply them, since if a and b both

leave a remainder of 1 when divided by 4 then so does their product. (Do you see why this 

is true?) 

We say that m M-divides n if n = mk for some M-number k. And we say that n is
an M-prime if its only M-divisors are 1 and itself. (Of course, we don't consider 1 itself to 

be an M-prime. ) 

(a) Find the first six M-primes. 

(b) Find an M-number n that has two different factorizations as a product of M-primes. 

7. 7. ,;Q In this exercise you are asked to write programs to factor a (positive ) integer n 

into a product of primes. (If n = 0, be sure to return an error message instead of going into 

an infinite loop!) A convenient way to represent the factorization of n is as a 2 x r matrix.

Thus, if 

n 
_ pk1pk2 pkr 
- 1 2 · · · r '

then store the factorization of n as the matrix 

Pr) 
kr .

(If your programming language doesn't allow dynamic storage allocation, you'll have to 

decide ahead of time how many factors to allow. ) 
(a) Write a program to factor n by trying each possible factor d = 2, 3, 4 ,  5, 6, . . . . (This

is an extremely inefficient method but will serve as a warm-up exercise. ) 

(b) Modify your program by storing the values of the first 100 (or more ) primes and 

first removing these primes from n before looking for larger prime factors. You 

can speed up your program when trying larger d's as potential factors if you don't 

bother checking d's that are even, or divisible by 3, or by 5. You can also increase 

efficiency by using the fact that a number m is prime if it is not divisible by any

number between 2 and rm. use your program to find the complete factorization of

all numbers between 1,000,000 and 1,000,030. 

(c) Write a subroutine that prints the factorization of n in a nice format. Optimally, 

the exponents should appear as exponents; but if this is not possible, then print the 

factorization of (say ) n = 75460 = 22 
· 5 · 73

· 11 as 

2"2 * 5 * 7"3 * 11. 

(To make the output easier to read, don't print exponents that equal 1.) 



Chapter 8 

Congruences 

Divisibility is a powerful tool in the theory of numbers. We have seen this amply 

demonstrated in our work on Pythagorean triples, greatest common divisors, and 

factorization into primes. In this chapter we will discuss the theory of congruences. 

Congruences provide a convenient way to describe divisibility properties. In fact, 

they are so convenient and natural that they make the theory of divisibility very 

similar to the theory of equations. 

We say that a is congruent to b modulo m, and we write 

a b (mod m) , 

if m divides a - b. For example, 

7 - 2 (mod 5) and 47 - 35 (mod 6), 

since 

51(7-2) and 61(47 -35). 

In particular, if a divided by m leaves a remainder of r, then a is congruent tor 

modulo m. Notice that the remainder satisfies 0 < r < m, so every integer is con

gruent, modulo m, to a number between 0 and m - 1. 

The number m is called the modulus of the congruence. Congruences with the 

same modulus behave in many ways like ordinary equations. Thus, if 

ai b1 (mod m) and a2 - b2 (mod m) , then

ai ± a2 bi± b2 (mod m) and aia2 bib2 (mod m) .

Warning. It is not always possible to divide congruences. In other words, 

if ac be (mod m) , it need not be true that a - b (mod m ) . For example,
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15 · 2 - 20 · 2 (mod 10), but 15 ¢= 20 (mod 10). Even more distressing, it 

is possible to have 

uv 0 (mod m) with u ¢= 0 (mod m) and v ¢= 0 (mod m) . 

Thus 6 · 4 - 0 (mod 12), but 6 ¢= 0 (mod 12) and 4 ¢= 0 (mod 12). How

ever, if gcd( c, m) = 1, then it is okay to cancel c from the congruence 

ac be (mod m) . You will be asked to verify this as an exercise. 
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Congruences with unknowns can be solved in the same way that equations are 

solved. For example, to solve the congruence 

x + 12 5 (mod 8), 

we subtract 12 from each side to get 

x 5-12 -7(mod8). 

This solution is fine, or we can use the equivalent solution x - 1 (mod 8). Notice 

that -7 and 1 are the same modulo 8, since their difference is divisible by 8. 
Here's another example. To solve 

4x = 3 (mod 19), 

we will multiply both sides by 5. This gives 

20x = 15 (mod 19). 

But 20 = 1 (mod 19), so 20x = x (mod 19). Thus the solution is 

x - 15 (mod 19). 

We can check our answer by substituting 15 into the original congruence. Is 

4 · 15 _ 3 (mod 19)? Yes, because 4 · 15 - 3 = 57 = 3 · 19 is divisible by 19. 
We solved this last congruence by a trick, but if all else fails, there's always 

the "climb every mountain" technique.1 To solve a congruence modulo m, we can 

just try each value 0, 1, ... , m - 1 for each variable. For example, to solve the 

congruence 

x2 + 2x -1 = 0 (mod 7), 

we just try x = 0, x = 1, ... , x = 6. This leads to the two solutions x 2 (mod 7) 
and x 3 (mod 7). Of course, there are other solutions, such as x 9 (mod 7). 

1 Also known as the "ford every stream" technique for those who prefer wet feet to vertigo. 



[Chap. 8] Congruences 57 

But 9 and 2 are not really different solutions, since they are the same modulo 7. 

So when we speak of "finding all the solutions to a congruence," we normally 

mean that we will find all incongruent solutions, that is, all solutions that are not 

congruent to one another. 

We also observe that there are many congruences, such as x2 = 3 (mod 10 ) , 

that have no solutions. This shouldn't be too surprising. After all, there are ordinary 

equations such as x2 = -1 that have no (real) solutions. 

Our final task in this chapter is to solve congruences that look like 

ax - c (mod m) . 

Some congruences of this type have no solutions. For example, if 

6x = 15 (mod 514) 

were to have a solution, then 514 would have to divide 6x - 15. But 6x - 15 is al

ways odd, so it cannot be divisible by the even number 514. Hence the congruence 

6x = 15 (mod 514) has no solutions. 

Before giving the general theory, let's try an example. We will solve the con

gruence 

18x _ 8 (mod 22). 

This means we need to find a value of x with 22 dividing 18x - 8, so we have to 

find a value of x with 18x - 8 = 22y for some y. In other words, we need to solve 

the linear equation 

18x - 22y = 8. 

We know from Chapter 6 that we can solve the equation 

18u - 22v = gcd(18, 22) = 2, 

and indeed we easily find the solution u = 5 and v = 4. But we really want the 

right-hand side to equal 8, so we multiply by 4 to get 

18 . (5 . 4) - 22 . ( 4 . 4) = 8. 

Thus, 18 · 20 _ 8 (mod 22), so x _ 20 (mod 22) is a solution to the original 

congruence. We will soon see that this congruence has two different solutions 

modulo 22; the other one turns out to be x - 9 (mod 22). 
Suppose now that we are asked to solve an arbitrary congruence of the form 

ax= c (mod m) . 
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We need to find an integer x such that m divides ax - c. The number m will divide 

the number ax - c if we can find an integer y such that ax - c = my. Rearranging 

this last equation slightly, we see that ax - c (mod m) has a solution if, and only 

if, the linear equation ax - my = c has a solution. This should look familiar; it is 

precisely the sort of problem we solved in Chapter 6. 

To make our formulas a bit neater, we will let g = gcd(a, m). Our first obser

vation is that every number of the form ax - my is a multiple of g; so if g does not 

divide c, then ax - my = c has no solutions and so ax= c (mod m) also has no 

solutions. 

Next suppose that g does divide c. We know from the Linear Equation Theorem 

in Chapter 6 that there is always a solution to the equation 

au+mv = g. 

Suppose we find a solution u = u0, v = v0, either by trial and error or by using the 

Euclidean algorithm method described in Chapter 6. Since we are assuming that g 

divides c, we can multiply this equation by the integer c/ g to obtain the equation 

This means that 

cuo cvo 
a-+m- =c. 

g g 

cuo 
xo = - (mod m) is a solution to the congruence ax = c (mod m). 

g 

Are there other solutions? Suppose that x1 is some other solution to the con

gruence ax - c (mod m). Then ax1 _ axo (mod m), so m divides ax1 - axo. 
This implies that 

m 

g 
divides 

a(x1 - xo) 

g 

and we know that m/ g and a/ g have no common factors, so m/ g must divide 

x1 - xo. In other words, there is some number k such that 

m 
x1 = xo + k · - . 

g 

But any two solutions that differ by a multiple of m are considered to be the 

same, so there will be exactly g different solutions that are obtained by taking 

k = 0,1, ... ,g - 1. 

This completes our analysis of the congruence ax _ c (mod m ) . We summa

rize our findings in the fallowing statement. 
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Theorem 8.1 (Linear Congruence Theorem). Let a, c, and m be integers with 

m > 1, and let g = gcd(a, m ) . 

(a) If g f c, then the congruence ax _ c (mod m ) has no solutions. 

(b) If glc, then the congruence ax= c (mod m) has exactly g incongruent solu

tions. To find the solutions, first find a solution ( uo, vo ) to the linear equation 

au + mv = g. 

(A method for solving this equation is described in Chapter 6.) Then x0 = 

cuo / g is a solution to ax = c (mod m ), and a complete set of incongruent 

solutions is given by 

m 

x xo + k · - (mod m ) fork= 0, 1, 2, ... , g - 1. 
g 

For example, the congruence 

943x 381 (mod 2576) 

has no solutions, since gcd(943, 2576) = 23 does not divide 381. On the other 

hand, the congruence 

893x _ 266 (mod 2432) 

has 19 solutions, since gcd(893, 2432) = 19 does divide 266. Notice that we are 

able to determine the number of solutions without having computed any of them. 

To actually find the solutions, we first solve 

893u - 2432v = 19. 

Using the methods from Chapter 6, we find the solution (u, v ) = (79, 29). Multi

plying by 266/19 = 14 gives the solution 

(x, y) = (1106, 406) to the equation 893x - 2432y = 266. 

Finally, the complete set of solutions to 

893x _ 266 (mod 2432) 

is obtained by starting with x 1106 (mod 2432) and adding multiples of the 

quantity 2432/19 = 128. (Don't forget that if the numbers go above 2432 we are 

allowed to subtract 2432.) The 19 incongruent solutions are 

1106,1234,1362,1490,1618,1746,1874,2002,2130,2258, 

2386,82,210,338,466,594,722,850,978. 
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Important Note. The most important case of the Linear Congruence Theorem is 

when gcd( a, m) = 1. In this case, it says that the congruence 

ax= c (mod m) 

has exactly one solution. We might even write the solution as a fraction 

c 
x = - (mod m) , 

a 

but if we do, then we must remember that the symbol"� (mod m) " is really only 

a convenient shorthand for the solution to the congruence ( * ). 

Nonlinear congruences are also very important in number theory. As an exam

ple, consider the congruence 

x2 + 1 = 0 (mod m) 

whose solutions are square roots of -1 modulo m. For some values of m such as 

m = 5 and m = 13, there are solutions, 

22 + 1 _ 0 (mod 5) and 52 + 1 _ 0 (mod 13), 

while for other values such as m = 3 and m = 7, there are no solutions. 

You probably already know that a polynomial of degreed with real coefficients 

has no more than d real roots.2 This well-known "fact" is not true for congruences, 

since for example the congruence 

x2 + x = 0 (mod 6) 

has four distinct roots modulo 6, namely 0, 2, 3, and 5. However, if we look at 

congruences modulo primes, then order and harmony are restored to the world. 

And although the statement of the following theorem may seem innocuous, we 

will see later that it is a powerful tool for proving many important results. 

Theorem 8.2 (Polynomial Roots Mod p Theorem). Let p be a prime number and 
let 

f(x) = aoxd + aixd-l +···+ad 

be a polynomial of degree d > 1 with integer coefficients and with p f ao. Then the 
congruence 

f(x) = 0 (mod p) 

has at most d incongruent solutions. 
2In fact, the Fundamental Theorem of Algebra (see Theorem 35.1 on page 268) implies that a 

polynomial of degree d with complex coefficients always has exactly d complex roots, provided that 

you count multiple roots appropriately. 



[Chap. 8] Congruences 61 

There are many ways to prove this important theorem, but for the sake of vari

ety and to introduce you to a new mathematical tool, we give a "Proof by Contra

diction." 3 In a proof by contradiction, we begin by making a statement. We then 

use that statement to make deductions, eventually ending up with a conclusion that 

is clearly false. This allows us to deduce that the original statement was false, since 

it led to a false conclusion.4 

The particular statement with which we begin is the following: 

Statement: 

There exists at least one polynomial F(x) with integer 

coefficients and with leading coefficient not divisible by 

p such that the congruence F ( x) = 0 (mod p) has more 

distinct roots modulo p than its degree. 

Now among all such polynomials, we choose one having smallest possible degree, 

say 

Then we let 

be distinct mod p solution to the congruence 

F(x) 0 (mod p). 

We are going to use the fact that for any value of r, the difference F ( x) - F ( r) 
can be factored. To see this, we write 

Each term xi - ri has a factor of x - r, since 

Pulling an x - r out of each term, we find that 

F(x) - F(r) = (x - r)(some messy polynomial of degreed - 1). 

In other words, there is a polynomial 

G(x) = Boxd-l + B1xd-2 + · · · + Bd-2x + Bd-l 
3The classical Latin phrase for "proof by contradiction" is reductio ad absurdum, literally "re

duction to an absurdity." As G.H. Hardy says in his monograph A Mathematician's Apology, proof 

by contradiction "is one of a mathematician's finest weapons. It is a far finer gambit than any chess 

gambit: a chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers 

the game." 

4 See page 299 for a brief discussion of the philosophy that lies behind proofs by contradiction. 
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of degree d - 1 such that 

F(x) = F(r) + (x - r)G(x). 

In particular, if we substitute r = r1 and use the fact that F ( r1) = 0 (mod p), we 

find that 

F(x) = (x - ri)G(x) (mod p). 

We have assumed that F(x) = 0 (mod p) has d + 1 distinct incongruent so

lutions x = ri, r2, ... , rd+I· If we substitute one of the solutions rk with k > 2 

for x, we find that 

We know that ri ¢:. rk (mod p), so the Prime Divisibility Property (Theorem 7.2) 
tells us that G(rk) = 0 (mod p). (Note that this is where we use the assumption 

that the modulus p is prime. Do you see why the argument would fall apart if the 

modulus were composite?) 

We now know that r2, r3, ... , rd+l are solutions to G(x) = 0 (mod p). Thus 

G ( x) is a polynomial of degree d - 1 that has d distinct roots modulo p. This 

contradicts the fact that among such polynomials, the polynomial F(x) was one 

having the smallest possible degree. Hence the original statement must be false, 

which shows that there are no polynomials having more roots modulo p than their 

degree. Stated in a positive manner, we have proven that every polynomial of 

degree d has at most d roots modulo p. This completes the proof of Theorem 8.2. 

Exercises 

8.1. Suppose that ai bi (mod m) and a2 b2 (mod m) . 

(a) Verify that ai + a2 bi+ b2 (mod m) and that ai - a2 bi - b2 (mod m) . 

(b) Verify that aia2 bib2 (mod m) . 

8.2. Suppose that 

ac be (mod m) 

and also assume that gcd(c, m) = 1. Prove that a b (mod m) . 

8.3. Find all incongruent solutions to each of the following congruences. 
(a) 7x 3 (mod 15) (b) 6x 5 (mod 15) 
(c) x2 

= 1 (mod 8) (d) x2 
= 2 (mod 7) 

(e) x2 
3 (mod 7) 

8.4. Prove that the following divisibility tests work. 

(a) The number a is divisible by 4 if and only if its last two digits are divisible by 4. 
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(b) The number a is divisible by 8 if and only if its last three digits are divisible by 8. 
(c) The number a is divisible by 3 if and only if the sum of its digits is divisible by 3. 
(d) The number a is divisible by 9 if and only if the sum of its digits is divisible by 9. 
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( e) The number a is divisible by 11 if and only if the alternating sum of the digits of a is

divisible by 11. (If the digits of a are a1a2a3 ... ad-lad, the alternating sum means

to take a1 - a2 + a3 - · · · with alternating plus and minus signs.)

[Hint. For (a), reduce modulo 100, and similarly for (b). For (c), (d), and (e), write a as a 

sum of multiples of powers of 10 and reduce modulo 3, 9, and 11.]

8.5. Find all incongruent solutions to each of the following linear congruences. 

(a) 8x 6 (mod 14) 
(b) 66x 100 (mod 121) 
(c) 21x 14 (mod 91) 

8.6. Determine the number of incongruent solutions for each of the following congruences. 

You need not write down the actual solutions. 

(a) 72x 47 (mod 200) 
(b) 4183x 5781 (mod 15087) 
(c) 1537x _ 2863 (mod 6731) 

8.7. il Write a program that solves the congruence

ax c (mod m). 

[If gcd(a, m) does not divide c, return an error message and the value of gcd(a, m) .] Test

your program by finding all of the solutions to the congruences in Exercise 8.6. 

8.8. il Write a program that takes as input a positive integer m and a polynomial f (X) 
having integer coefficients and produces as output all of the solutions to the congruence 

f (X) - 0 (mod m). 

(Don't try to be fancy. Just substitute X = 0, 1, 2, ... m - 1 and see which values are 

solutions.) Test your program by taking the polynomial 

f (X) = X11 + 21X7 - 8X3 
+ 8

and solving the congruence f ( X) 0 (mod m) for each of the following values of m, 

m E {130, 137, 144, 151, 158, 165, 172}. 

8.9. (a) How many solutions are there to the congruence

X4 + 5X3 + 4X2 - 6X - 4 0 (mod 11) with 0:::; X < 11? 

Are there four solutions, or are there fewer than four solutions? 
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(b) Consider the congruence X2 
- 1 _ 0 (mod 8). How many solutions does it have

with 0 < X < 8? Notice that there are more than two solutions. Why doesn't this 

contradict the Polynomial Roots Mod p Theorem (Theorem 8.2)? 

8.10. Let p and q be distinct primes. What is the maximum number of possible solutions 

to a congruence of the form 

x2 
- a= 0 (modpq),

where as usual we are only interested in solutions that are distinct modulo pq? 



Chapter 9 

Congruences, Powers, 
and Fermat's Little Theorem 

Take a number a and consider its powers a, a2, a3, ... modulo m. Is there any

pattern to these powers? We will start by looking at a prime modulus m = p,

since the pattern is easier to spot. This is a common situation in the theory of 

numbers, especially when working with congruences. So whenever you're faced 

with discovering a congruence pattern, it's usually a good idea to begin with a 

prime modulus. 

For each of the primes p = 3, p = 5, and p = 7, we have listed integers 

a = 0, 1, 2, ... and some of their powers modulo p. Before reading further, you 

should stop, examine these tables, and try to formulate some conjectural patterns. 

Then test your conjectures by creating a similar table for p = 11 and seeing if your 

patterns are still true. 

a a2 a3 a4 a5 a6 a7 as

a a2 a3 a4 a5 a6
0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 1 

a a2 a3 a4
0 0 0 0 0 0 

1 1 1 1 1 1 

2 4 1 2 4 1 2 4 

3 2 6 4 5 1 3 2 

0 0 0 0 2 4 3 1 2 4 4 2 1 4 2 1 4 2 

1 1 1 1 3 4 2 1 3 4 5 4 6 2 3 1 5 4 

2 1 2 1 4 1 4 1 4 1 6 1 6 1 6 1 6 1 

ak modulo 3 ak modulo 5 ak modulo 7 

Many interesting patterns are visible in these tables. The one that we will be 
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concerned with in this chapter can be seen in the columns 

a2 (mod 3), a4 (mod 5), and a6 (mod 7). 
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Every entry in these columns, aside from the top one, is equal to 1. Does this 

pattern continue to hold for larger primes? You can check the table you made for 

p = 11, and you will find that 

110 = 1(mod11), 210 = 1 (mod 11), 310 = 1 (mod 11) ... 

910 = 1 (mod 11), and 1010 = 1 (mod 11). 

This leads us to make the following conjecture: 

ap-l = 1 (mod p) for every integer 1 < a < p. 

Of course, we don't really need to restrict a to be between 1 and p - 1. If a1 

and a2 differ by a multiple of p, then their powers will be the same modulo p. So 

the real condition on a is that it not be a multiple of p. This result was first stated 

by Pierre de Fermat in a letter to Frenicle de Bessy dated 1640, but Fermat gave 

no indication of his proof. The first known proof appears to be due to Gottfried 

Leibniz.1 

Theorem 9.1 (Fermat's Little Theorem). Let p be a prime number, and let a be 
any number with a =f:. 0 (mod p ) . Then 

ap-l = 1 (mod p). 

Before giving the proof of Fermat's Little Theorem, we want to indicate its 

power and show how it can be used to simplify computations. As a particular 

example, consider the congruence 

622 1 (mod 23). 

This says that the number 622 - 1 is a multiple of 23. If we wanted to check this 

fact without using Fermat's Little Theorem, we would have to multiply out 622, 
subtract 1, and divide by 23. Here's what we get: 

622 - 1 = 23 . 57226827757507 45. 
1Gottfried Leibniz (1646-1716) is best known as one of the discoverers of the calculus. He and 

Isaac Newton worked out the main theorems of the calculus independently and at about the same 

time. The German and English mathematical communities spent the next two centuries arguing over 

who deserved priority. The current consensus is that both Leibniz and Newton should be given joint 

credit as the (independent) discoverers of the calculus. 
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Similarly, in order to verify directly that 73100 = 1 (mod 101), we would have to 

compute 73100 - 1. Unfortunately, 73100 - 1 has 187 digits! And notice that this 

example only uses p = 101, which is a comparatively small prime. Fermat's Little 

Theorem thus describes a very surprising fact about extremely large numbers. 

We can use Fermat's Little Theorem to simplify computations. For example, 

in order to compute 235 (mod 7), we can use the fact that 26 1 (mod 7). So we 

write 35 = 6 · 5 + 5 and use the law of exponents to compute 

235 
= 26·5+5 

= (26)5. 25 = 15. 25 = 32 = 4 (mod 7). 

Similarly, suppose that we want to solve the congruence x103 4 (mod 11). 
Certainly, x ¢. 0 (mod 11), so Fermat's Little Theorem tells us that 

x10 _ 1 (mod 11). 

Raising both sides to the 10th power gives x100 1 (mod 11), and then multiply

ing by x3 gives x103 x3 (mod 11). So, to solve the original congruence, we just 

need to solve x3 4 (mod 11). This can be solved by trying successively x = 1, 
x = 2, .... Thus, 

x (mod 11) 0 1 2 3 4 5 6 7 8 9 10 

x3 (mod 11) 0 1 8 5 9 4 7 2 6 3 10 

So the congruence x103 - 4 (mod 11) has the solution x - 5 (mod 11). 
We are now ready to prove Fermat's Little Theorem. In order to illustrate the 

method of proof, we will first prove that 36 1 (mod 7). Of course, there is no 

need to give a fancy proof of this fact, since 36 - 1 = 728 = 7 · 104. Nevertheless, 

when attempting to understand a proof or when attempting to construct a proof, it 

is often worthwhile using specific numbers. Of course, the idea is to devise a proof 

that doesn't really use the fact that we are considering specific numbers and then 

hope that the proof can be made to work in general. 

To prove that 36 = 1 (mod 7), we start with the numbers 

1,2,3,4,5,6, 

multiply each of them by 3, and reduce modulo 7. The results are listed in the 

following table: 

x (mod 7) 

3x (mod 7) 

Notice that each of the numbers 1, 2, 3, 4, 5, 6 reappears exactly once in the second 

row. So if we multiply together all the numbers in the second row, we get the same 
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result as multiplying together all the numbers in the first row. Of course, we must 
work modulo 7. Thus, 

( 3 · 1) ( 3 · 2) ( 3 · 3) ( 3 · 4) ( 3 · 5) ( 3 · 6) 1 · 2 · 3 · 4 · 5 · 6 (mod 7). 

numbers in second row numbers in first row 

To save space, we use the standard symbol n! for the number n factorial, which is 
the product of 1, 2, ... , n. In other words, 

n! = 1 · 2 · 3 · · · (n - 1) · n. 

Factoring out the six factors of 3 on the left-hand side of our congruence gives 

36 · 6! = 6! (mod 7). 

Notice that 6! is relatively prime to 7, so we can cancel the 6! from both sides. This 
gives 36 1 (mod 7), which is exactly Fermat's Little Theorem. 

We are now ready to prove Fermat's Little Theorem in general. The key ob
servation in our proof for 36 (mod 7) was that multiplication by 3 rearranged the 
numbers 1, 2, 3, 4, 5, 6 (mod 7). So first we are going to verify the following claim: 

Lemma 9.2. Let p be a prime number and let a be a number with a ¢. 0 (mod p ). 
Then the numbers 

a, 2a, 3a, ... , (p - l)a (mod p) 

are the same as the numbers 

1,2,3, ... ,(p - 1) (modp), 

although they may be in a different order. 

Proof The list a, 2a, 3a, ... , (p - 1 )a contains p - 1 numbers, and clearly none of 
them are divisible by p. Suppose that we take two numbers j a and ka in this list, 
and suppose that they happen to be congruent, 

ja = ka (mod p). 

Then p I (j - k )a, sop I (j - k ), since we are assuming that p does not divide a. 
Notice that we are using the Prime Divisibility Property proved in Chapter 7, which 
says that if a prime divides a product then it divides one of the factors. On the other 
hand, we know that 1 < j, k < p- l, so lj - kl < p - 1. There is only one number 
with absolute value less than p - 1 that is divisible by p and that number is zero. 
Hence, j = k. This shows that different multiples in the list a, 2a, 3a, ... , (p- 1 )a 
are distinct modulo p. 
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So we now know that the list a, 2a, 3a, ... , (p - 1 )a contains p - 1 distinct 

nonzero values modulo p. But there are only p - 1 distinct nonzero values mod

ulo p, that is, the numbers 1, 2, 3, ... , (p-1). Hence, the list a, 2a, 3a, ... , (p-l)a 
and the list 1, 2, 3, ... , (p -1) must contain the same numbers modulo p, although 

the numbers may appear in a different order. This finishes the proof of the lemma. 

Using the lemma, it is easy to finish the proof of Fermat's Little Theorem. The 

lemma says that the lists of numbers 

a, 2a, 3a, ... , (p - l)a (mod p) and 1, 2, 3, ... , (p - 1) (mod p) 

are the same, so the product of the numbers in the first list is equal to the product 

of the numbers in the second list: 

a · ( 2a) · ( 3a) · · · ( (p - 1) a) = 1 · 2 · 3 · · · (p - 1) (mod p).

Next we factor our p - 1 copies of a from the left-hand side to obtain 

ap-l · (p - 1)! = (p - 1)! (mod p).

Finally, we observe that (p - 1) ! is relatively prime top, so we may cancel it from 

both sides to obtain Fermat's Little Theorem, 

ap-l 1 (mod p). D 

Fermat's Little Theorem can be used to show that a number is not a prime 

without actually factoring it. For example, it turns out that 

21234566 = 899557 (mod 1234567). 

This means that 1234567 cannot be a prime, since if it were, Fermat's Little Theo

rem would tell us that 21234566 must be congruent to 1 modulo 1234567. [If you're 

wondering how we computed 21234566 (mod 1234567), don't fret; we'll describe

how to do it in Chapter 16.] It turns out that 1234567 = 127 · 9721, so in this case

we can actually find a factor. But consider the number 

m = 10100 + 37. 

When we compute 2m-l (mod m) , we get

2m-l = 36263603275458610624877601996335839108 
36873253019151380128320824091124859463 

579459059730070231844397 (mod m ) . 
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Again we deduce from Fermat's Little Theorem that 10100 
+ 37 is not prime, but it

is not at all clear how to find a factor. A quick check on a desktop computer reveals 

no prime factors less than 200,000. It is somewhat surprising that we can easily 

write down numbers that we know are composite, yet for which we are unable to 

find any factors. 

Exercises 

9.1. Use Fermat's Little Theorem to perform the following tasks. 

(a) Find a number 0 <a< 73 with a_ 9794 (mod 73). 
(b) Solve x86 = 6 (mod 29). 
(c) Solve x39 _ 3 (mod 13). 

9.2. The quantity (p - 1)! (mod p) appeared in our proof of Fermat's Little Theorem,

although we didn't need to know its value. 

(a) Compute (p - 1) ! (mod p) for some small values of p, find a pattern, and make a

conjecture. 

(b) Prove that your conjecture is correct. [Try to discover why (p - 1) ! (mod p) has the

value it does for small values of p, and then generalize your observation to prove the

formula for all values of p.] 

9.3. Exercise 9 .2 asked you to determine the value of (p - 1) ! (mod p) when p is a prime

number. 

(a) Compute the value of (m - 1)! (mod m) for some small values of m that are not

prime. Do you find the same pattern as you found for primes? 

(b) If you know the value of ( n - 1) ! (mod n) , how can you use the value to definite I y

distinguish whether n is prime or composite? 

9.4. If p is a prime number and if a '¥=- 0 (mod p), then Fermat's Little Theorem tells us

that aP-l - 1 (mod p). 
(a) The congruence 71734250 _ 1660565 (mod 1734251) is true. Can you conclude that

1734251 is a composite number?

(b) The congruence 12964026 = 15179 (mod 64027) is true. Can you conclude that

64027 is a composite number?

(c) The congruence 252632 _ 1 (mod 52633) is true. Can you conclude that 52633 is a

prime number? 



Chapter 1 O 

Congruences, Powers, 
and Euler's Formula 

In the previous chapter we proved Fermat's Little Theorem: If p is a prime and 

p f a, then ap- l 1 (mod p). This formula is certainly not true if we replace p by

a composite number. For example, 55 5 (mod 6) and 28 4 (mod 9). So we

ask whether there is some power, depending on the modulus m, such that 

a777 1 (mod m) .

Our first observation is that this is impossible if gcd( a, m) > 1. To see

why, suppose that ak 1 (mod m ). Then ak = 1 +my for some integer y, so

gcd( a, m) divides ak -my = 1. In other words, if some power of a is congruent

to 1 modulo m, then we must have gcd( a, m) = 1. This suggests that we look at

the set of numbers that are relatively prime tom, 

For example, 

{ a : 1 < a < m and gcd (a, m) = 1}. 

m {a : 1 :::; a :::; m and gcd (a, m) = 1} 
1 {1} 
2 {1} 
3 {1,2} 
4 {1,3} 
5 {1,2,3,4} 
6 {1,5} 
7 {1,2,3,4,5,6} 
8 {1,3,5,7} 
9 {1,2,4,5,7,8} 

10 {1,3,7,9} 
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The number of integers between 1 and m that are relatively prime tom is an 

important quantity, so we give this quantity a name: 

¢(m)=#{a: l<a<mandgcd(a,m)=l}. 

The function ¢ is called Euler's phi function. From the preceding table, we can 

read off the value of ¢(m) for 1 < m < 10. Thus 

I ��) II � I � I : I : I : I : I : I : I : I �
0 

I 
Notice that if pis a prime number then every integer 1 < a < pis relatively 

prime top. So for prime numbers we have the formula 

¢(p) = p - 1. 

We are going to try to mimic our proof of Fermat's Little Theorem. Suppose, 

for example, that we want to find a power of 7 that is congruent to 1 modulo 10. 
Rather than taking all the numbers 1 < a < 10, we will just take the numbers that 

are relatively prime to 10. They are 

1, 3, 7, 9 (mod 10). 

If we multiply each of them by 7, we get 

7 · 1 _ 7 (mod 10), 

7 · 7 9 (mod 10), 

7 · 3 _ 1 (mod 10), 

7·9 3 (mod10). 

Notice that we get back the same numbers, but rearranged. So if we multiply them 

together, we get the same product, 

(7 · 1)(7 · 3)(7 · 7)(7 · 9) 1 · 3 · 7 · 9 (mod 10) 

74(1 · 3 · 7 · 9) = 1 · 3 · 7 · 9 (mod 10). 

Now we can cancel 1 · 3 · 7 · 9 to get 74 
_ 1 (mod 10). 

Where does the exponent 4 come from? It's equal to the number of integers 

between 0 and 10 that are relatively prime to 1 O; that is, the exponent is 4 be

cause ¢(10) = 4. This suggests the truth of the following formula. 

Theorem 10.1 (Euler's Formula). If gcd( a, m) = 1, then 

a1>(m) _ 1 (mod m). 
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Proof Now that we have identified the correct set of numbers to consider, the proof 

of Euler's formula is almost identical to the proof of Fermat's Little Theorem. So 

we let 

1 < bi < b2 < · · · < b<f>(m) < m 

be the ¢(m) numbers between 0 and m that are relatively prime tom.

Lemma 10.2. If gcd(a, m) = 1, then the numbers

bia, b2a, b3a, ... , b¢(m)a (mod m) 

are the same as the numbers 

bi, b2, b3, ... , b<f>(m) (mod m), 

although they may be in a different order. 

Proof of the lemma. We note that if b is relatively prime to m, then ab is also rela

tively prime to m. Hence, each of the numbers in the list 

is congruent to one number in the list 

bi, b2, b3, ... , b</>(m) (mod m). 

Furthermore, there are ¢( m) numbers in each list. So if we can show that the 

numbers in the first list are distinct modulo m, it will follow that the two lists are 

the same (after rearranging). 

Suppose that we take two numbers bja and bka from the first list, and suppose 

that they are congruent, 

bja - bka (mod m). 

Then mJ(bj-bk)a. But m and a are relatively prime, so we find that mJbj - bk. On 

the other hand, bj and bk are between 1 and m, which implies I bj - bk I < m - 1.

There is only one number with absolute value strictly less than m that is divisible 

by m and that number is zero. Hence, bj = bk. This shows that the numbers in the 

list 

bia, b2a, b3a, ... , b¢(m)a (mod m) 

are all distinct modulo m, which completes the proof that the lemma is true. 

Using the lemma, we can easily finish the proof of Euler's formula. The lemma 

says that the lists of numbers 

and 
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bi, b2, b3, ... , bc/>(m) (mod m)

74 

are the same, so the product of the numbers in the first list is equal to the product 
of the numbers in the second list: 

We can factor out </>( m) copies of a from the left-hand side to obtain 

acl>(m) B = B (mod m),

Finally, we observe that B is relatively prime tom, since each of the bi's is rela
tively prime tom. This means we may cancel B from both sides to obtain Euler's 
formula 

acl>(m) 
_ 1 (mod m). D 

Exercises 

10.1. Let bi < b2 < · · · < b¢(m) be the integers between 1 and m that are relatively prime

tom (including 1), and let B = bi b2b3 · · · b¢(m) be their product. The quantity B came up

during the proof of Euler's formula. 

(a) Show that either B 1 (mod m) or B -l (mod m) . 

(b) Compute B for some small values of m and try to find a pattern for when it is equal

to +1 (mod m) and when it is equal to -1 (mod m) . 

10.2. The number 3750 satisfies ¢(3750) = 1000. [In the next chapter we'll see how

to compute ¢(3750) with very little work.] Find a number a that has the following three

properties: 

(i) a 73003 (mod 3750). 
(ii) 1 � a � 5000. 

(iii) a is not divisible by 7. 

10.3. A composite number mis called a Carmichael number if the congruence am-i 
1 (mod m) is true for every number a with gcd(a, m) = 1. 

(a) Verify that m = 561 = 3 · 11 · 17 is a Carmichael number. [Hint. It is not necessary

to actually compute am-i (mod m) for all 320 values of a. Instead, use Fermat's

Little Theorem to check that am-i 1 (mod p) for each prime p dividing m, and

then explain why this implies that am-i 1 (mod m).]

(b) Try to find another Carmichael number. Do you think that there are infinitely many

of them? 



Chapter 11 

Euler's Phi Function and the 

Chinese Remainder Theorem 

Euler's formula 

ac/J(m) 1 (mod m) 
is a beautiful and powerful result, but it won't be of much use to us unless we 

can find an efficient way to compute the value of ¢( m) . Clearly, we don't want

to list all the numbers from 1 to m - 1 and check each to see if it is relatively

prime tom. This would be very time consuming if m � 1000, for example, and it 

would be impossible form � 10100. As we observed in the last chapter, one case

where ¢( m) is easy to compute is when m = p is a prime, since then every integer

1 < a < p - 1 is relatively prime to m. Thus, <f>(p) = p - 1. 

We can easily derive a similar formula for ¢(pk) when m = pk 
is a power of a

prime. Rather than trying to count the numbers between 1 and pk 
that are relative! y

prime to pk, we will instead start with all numbers 1 < a < pk, and then we will

discard the ones that are not relatively prime to pk. 
When is a number a not relatively prime to pk? The only factors of pk 

are

powers of p, so a is not relatively prime to pk 
exactly when it is divisible by p. In

other words, 

¢(pk) = pk - # {a : 1 < a < pk 
and p I a}.

So we have to count how many integers between 1 and pk 
are divisible by p. That's

easy, they are the multiples of p, 

p, 2p, 3p, 4p, ... (pk-l - 2)p, (pk-l - l)p,pk.

There are pk-I of them, which gives us the formula
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For example, 

¢(2401) = ¢(74) = 74 - 73 = 2058. 

76 

This means that there are 2058 integers between 1 and 2401 that are relatively 

prime to 2401. 

We now know how to compute ¢(m) when mis a power of a prime. Next 

suppose that m is the product of two primes powers, m = pi qk. To formulate a 

conjecture, we compute ¢(pi qk) for some small values and compare it with the 

values of ¢(pi) and ¢(qk). 

pi qk piqk ¢(pi) ¢(qk) ¢(piqk) 

2 3 6 1 2 2 

4 5 20 2 4 8 

3 7 21 2 6 12 

8 9 72 4 6 24 

9 25 225 6 20 120 

This table suggests that ¢(piqk) = ¢(pi)¢(qk). We can also try some examples 

with numbers that are not prime powers, such as 

¢(14) = 6, ¢(15) = 8, ¢(210) = ¢(14 . 15) = 48. 

all this leads us to guess that the following assertion is true: 

If gcd(m, n) = 1, then ¢(mn) = ¢(m)¢(n). 

Before trying to prove this multiplication formula, we show how it can be used to 

easily compute ¢( m) for any m or, more precisely, for any m that you are able to 

factor as a product of primes. 

Suppose that we are given a number m, and suppose that we have factored m 

as a product of primes, say 

m _ pk1 pk2 pkr 
- 1 · 2 · · · r ' 

where Pl, p2, ... , Pr are all different. First we use the multiplication formula to 

compute 

¢(m) = ¢(p�1) . ¢(p�2) ... ¢(p�r). 

Then we use the prime power formula ¢(pk) =pk - pk-l to obtain 
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This formula may look complicated, but the procedure to compute ¢( m) is really 
very simple. For example, 

¢(1512) = ¢(23 . 33 . 7) = ¢(23) . ¢(33) . ¢(7) 

= (23 - 22) . (33 - 32) . (7 - 1) = 4 . 18. 6 = 432. 

So there are 432 numbers between 1 and 1512 that are relatively prime to 1512. 

We are now ready to prove the multiplication formula for Euler's phi function. 
We also restate the formula for prime powers so as to have both formulas conve
niently listed together. 

Theorem 11.1 (Phi Function Formulas). (a) If p is a prime and k > 1, then 

¢(pk) 
=

pk - pk-l. 

(b) /fgcd(m,n) = 1, then ¢(mn) = ¢(m)¢(n) . 

Proof We verified the prime power formula (a) earlier in this chapter, so we need 
to check the product formula (b ). We will do this by using one of the most powerful 
tools available in number theory: 

I COUNTING I 
You may wonder how counting can be so powerful. After all, it's one of the first 
things taught in kindergarten.1 Briefly, we are going to find one set that con
tains ¢( mn) elements and a second set that contains ¢( m )¢( n) elements. Then 
we will show that the two sets contain the same number of elements. 

The first set is 

{a : 1 <a< mn and gcd(a, mn) = 1 }. 

It is clear that this set contains ¢( mn) elements, since that's just the definition 
of¢( mn). The second set is 

{ 1 < b < m and gcd(b, m) = 1 } 
(b,c) : 

1 < c < n and gcd(c,n) = 1 
· 

How many pairs (b, c) are in this second set? Well, there are ¢(m) choices for b, 
since that's the definition of¢( m ) ,  and there are¢( n) choices for c, since that's the 
definition of ¢( n). So there are ¢( m) choices for the first coordinate b and ¢( n) 

1 Yet another illustration of the principle that Everything I Ever Needed To Know I Learned in 

Kindergarten, although proving theorems in number theory probably isn't one of the basic skills that 

Robert Fulghum had in mind when he wrote his book. 
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choices for the second coordinate c; so there are a total of ¢ ( m )¢( n) choices for 

the pair (b, c). 
For example, suppose that we take m = 4 and n = 5. Then the first set consists 

of the numbers 

{1,3,7,9,11,13,17,19} 

that are relatively prime to 20. The second set consists of the pairs 

{ (1, 1), (1, 2), (1, 3), (1, 4), (3, 1), (3, 2), (3, 3), (3, 4)} 

where the first number in each pair is relatively prime to 4 and the second number 

in each pair is relatively prime to 5. 
Going back to the general case, we are going to take each element in the first 

set and assign it to a pair in the second set in the following way: 

{ a : gc��,
arr:)n 

1
} 

� 

a mod mn 1-----7 

{ ( b, c) : 1 < b < m, gcd ( b, m) = 1 } 
l<c<n, gcd(c,n)=l 

( a  mod m, a mod n) 

What this means is that we take the integer a in the first set and send it to the 

pair (b, c) with 

a=b(modm) and a= c (mod n). 

This is probably clearer if we look again at our example with m = 4 and n = 5. 
Then, for example, the number 13 in the first set gets sent to the pair (1, 3) in the 

second set, since 13 1 (mod 4) and 13 3 (mod 5). We do the same for each 

of the other numbers in the first set. 

{1 3 7 9 11 13 17 19} { (l, l), (l, 2), (l, 3), (l, 4), 
' ' ' ' ' ' ' --7 (3,1), (3,2), (3,3), (3,4)} 

1 1-----7 (1,1) 
3 f-----t (3,3) 
7 f-----t (3,2) 
9 f-----t (1,4) 

111-----7 (3,1) 
13 1-----7 (1,3) 
17 f-----t (1,2) 
19 f-----t (3,4) 

In this example, you can see that each pair in the second set is matched with exactly 

one number in the first set. This means that the two sets have the same number of 

elements. We want to check that the same matching occurs in general. 

We need to check that the following two statements are correct: 

1. Different numbers in the first set get sent to different pairs in the second set. 
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2. Every pair in the second set is hit by some number in the first set. 

79 

Once we verify these two statements, we will know that the two sets have the 

same number of elements. But we know that the first set has ¢( mn) elements 

and the second set has c/> ( m) c/> ( n) elements. So in order to finish the proof that 

¢( mn) = ¢( m )¢( n ), we just need to verify (1) and (2). 
To check (1), we take two numbers ai and a2 in the first set, and we suppose 

that they have the same image in the second set. This means that 

ai = a2 (mod m) and ai = a2 (mod n) . 

Thus, a1 - a2 is divisible by both m and n. However, m and n are relatively prime, 

so ai - a2 must be divisible by the product mn. In other words, 

ai - a2 (mod mn) , 

which shows that a1 and a2 are the same element in the first set. This completes 

our proof of statement (1). 
To check statement (2), we need to show that for any given values of b and c 

we can find at least one integer a satisfying 

a b (mod m) and a c (mod n) . 

The fact that these simultaneous congruences have a solution is of sufficient im

portance to warrant having its own name. 

Theorem 11.2 (Chinese Remainder Theorem). Let m and n be integers satisfying 
gcd( m, n) 1, and let b and c be any integers. Then the simultaneous congru
ences 

x _ b (mod m) and x _ c (mod n) 

have exactly one solution with 0 < x < mn. 

Proof. Let's start, as usual, with an example. Suppose we want to solve 

x _ 8 (mod 11) and x _ 3 (mod 19). 

The solution to the first congruence consists of all numbers that have the form 

x = lly + 8. We substitute this into the second congruence, simplify, and try to 

solve. Thus, 

lly + 8 _ 3 (mod 19) 

lly = 14 (mod 19). 
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We know how to solve linear congruences of this sort (see the Linear Congruence 

Theorem in Chapter 8). The solution is y1 _ 3 (mod 19), and then we can find 

the solution to the original congruences using x1 = l ly1 + 8 = 11 · 3 + 8 = 41. 
Finally, we should check our answer: (41 -8)/11 = 3 and (41 -3)/19 = 2. v" 

For the general case, we again begin by solving the first congruence x = 

b (mod m). The solution consists of all numbers of the form x = my+ b. We 

substitute this into the second congruence, which yields 

my-c-b(mod n). 

We are given that gcd( m, n) = 1, so the Linear Congruence Theorem of Chapter 8 
tells us that there is exactly one solution y1 with 0 < Y1 < n. Then the solution to 

the original pair of congruences is given by 

Xl = my1 + b; 

and this will be the only solution x1 with 0 < x1 < mn, since there is only 

one Yl between 0 and n, and we multiplied Yl by m to get x1. This completes our 

proof of the Chinese Remainder Theorem and, with it, our proof of the formula 

</>(mn) = </>(m)</>(n). D 

Historical Interlude. The first recorded instance of the Chinese Remainder The

orem appears in a Chinese mathematical work from the late third or early fourth 

century. Somewhat surprisingly, it deals with the harder problem of three simulta

neous congruences. 

"We have a number of things, but we do not know exactly how many. 

If we count them by threes, we have two left over. If we count them 

by fives, we have three left over. If we count them by sevens, we have 

two left over. How many things are there?" 

Sun Tzu Suan Ching (Master Sun's Mathematical Manual) 

Circa AD 300, volume 3, problem 26. 

Exercises 

11.1. (a) Find the value of ¢(97). 
(b) Find the value of ¢(8800). 

11.2. (a) If m ;::: 3, explain why ¢( m) is always even. 
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(b) ¢(m) is "usually" divisible by 4. Describe all the m's for which ¢(m) is not divisible 
by4. 

11.3. Suppose that p1, p2, ... , Pr are the distinct primes that divide m. Show that the 
following formula for¢( m) is correct. 

Use this formula to compute ¢(1000000). 

11.4 . .B. Write a program to compute ¢(n), the value of Euler's phi function. You should 
compute ¢( n) by using a factorization of n into primes, not by finding all the a 's between 1 
and n that are relatively prime to n. 

11.5. For each part, find an x that solves the given simultaneous congruences. 
(a) x = 3 (mod 7) and x = 5 (mod 9) 
(b) x = 3 (mod 37) and x = 1 (mod 87) 
(c) x 5 (mod 7) and x 2 (mod 12) and x 8 (mod 13) 

11.6. Solve the 1700-year-old Chinese remainder problem from the Sun Tzu Suan Ching 

stated on page 80. 

11.7. A farmer is on the way to market to sell eggs when a meteorite hits his truck and 
destroys all of his produce. In order to file an insurance claim, he needs to know how many 
eggs were broken. He knows that when he counted the eggs by 2's, there was 1 left over, 
when he counted them by 3's, there was 1 left over, when he counted them by 4's, there 
was 1 left over, when he counted them by S's, there was 1 left over, and when he counted 
them by 6's, there was 1 left over, but when he counted them by 7's, there were none left 
over. What is the smallest number of eggs that were in the truck? 

11.8. R Write a program that takes as input four integers (b, m, c, n) with gcd (m, n) = 
1 and computes an integer x with 0 � x < mn satisfying 

x = b (mod m) and x = c (mod n). 

11.9. In this exercise you will prove a version of the Chinese Remainder Theorem for three 
congruences. Let m1, m2, m3 be positive integers such that each pair is relatively prime. 
That is, 

Let ai, a2, a3 be any three integers. Show that there is exactly one integer x in the interval 
0 � x < m1m2m3 that simultaneously solves the three congruences 

Can you figure out how to generalize this problem to deal with lots of congruences 

x a2 (mod m2) , ... , x ar (mod mr )? 

In particular, what conditions do the moduli m1, m2, ... , mr need to satisfy? 
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11.10. What can you say about n if the value of¢( n) is a prime number? What if it is the 
square of a prime number? 

11.11. (a) Find at least five different numbers n with ¢( n) = 160. How many more can 
you find? 

(b) Suppose that the integer n satisfies ¢ ( n) = 1000. Make a list of all of the primes that 
might possibly divide n. 

( c) Use the information from (b) to find all integers n that satisfy <P ( n) = 1000. 

11.12. Find all values of n that solve each of the following equations. 

(a) ¢(n) = n/2 (b) <f>(n) = n/3 (c) ¢(n) = n/6 

[Hint. The formula in Exercise 11.3 might be useful.] 

11.13. (a) For each integer 2 <a< 10, find the last four digits of a
1000.

(b) Based on your experiments in (a) and further experiments if necessary, give a simple 
criterion that allows you to predict the last four digits of a 

1000 from the value of a.

(c) Prove that your criterion in (b) is correct. 



Chapter 12 

Prime Numbers 

Prime numbers are the basic building blocks of number theory. That's what the 

Fundamental Theorem of Arithmetic, discussed in Chapter 7, tells us. Every num

ber is built up in a unique fashion by multiplying together prime numbers. There 

are analogous situations in other areas of science, and without exception the dis

covery and description of the building blocks has had a profound effect on its dis

cipline. For example, the field of chemistry was revolutionized by the discovery 

that every chemical is formed from a few basic elements and by Mendeleev cat

aloging these elements into families whose properties recur periodically. We will 

do something similar below when we split the set of prime numbers into various 

subsets, for example, into the set congruent to 1 modulo 4 and the set congruent 

to 3 modulo 4. Similarly, a tremendous advance in physics occurred when scien

tists discovered that the atoms comprising every element are made up of three basic 

particles, protons, neutrons, and electrons, 1 and that the number of each determines 

the chemical and physical attributes of the atom. For example, an atom made up 

of 92 protons and only 143 neutrons has properties that clearly distinguish it from 

its cousin with three additional neutrons. 

The fact that prime numbers are basic building blocks is sufficient reason to 

study their properties. Of course, this doesn't imply that those properties will be 

interesting. Studying how to conjugate irregular verbs is important when learning 

a language, but that doesn't make it very appealing. Luckily, the more one stud

ies prime numbers, the more interesting they become, and the more beautiful and 

surprising become the relationships that one discovers. In this brief chapter we 

will only have time to mention a few of the many remarkable properties of prime 

numbers. 

1This description of an atom is a simplification, but it is a fairly accurate portrayal of the original

atomic theories advanced in the early part of the twentieth century. 
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To begin with, let's list the first few primes: 

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61, .... 

What can we glean from this list? First, it looks like 2 is the only even prime. This 

is true, of course. If n is even and larger than 2 then it factors as n = 2 · ( n / 2). This 

makes 2 somewhat unusual among the set of primes, so people have been known 

to say that 

"2 is the oddest prime!"2 

A more important observation from our list of primes is signified by the ellipsis 

(three dots) appended at the end. This means that the list is not complete. For 

example, 67 and 71 are the next two primes. However, the real issue is whether 

the list ends or whether it continues indefinitely. In other words, are there infinitely 

many prime numbers? The answer is yes. We now give a beautiful proof that 

appeared in Euclid's Elements more than 2000 years ago. 

Theorem 12.1 (Infinitely Many Primes Theorem). There are infinitely many prime 
numbers. 

Euclid's Proof Suppose that you have already compiled a (finite) list of primes. I 

am going to show you how to find a new prime that isn't in your list. Since you can 

then add the new prime to the list and repeat the process, this will show that there 

must be infinitely many primes. 

So suppose we start with some list of primes P1,P2, ... ,Pr· We multiply them 

together and add 1, which gives the number 

A = P1P2 · · ·Pr + 1. 

If A itself is prime, we're done, since A is too large to be in the original list. But 

even if A is not prime, it will certainly be divisible by some prime, since every 

number can be written as a product of primes. Let q be some prime dividing A, for 

example, the smallest one. I claim that q is not in the original list, so it will be the 

desired new prime. 

Why isn't q in the original list? We know that q divides A, so 

q divides P1P2 · · · Pr + 1. 

If q were to equal one of the Pi 's, then it would have to divide 1, which is not 

possible. This means that q is a new prime that may be added to our list. Repeating 

2Naturally, I would never even consider repeating such a weak joke! Notice that this is one of 

those jokes that is language specific. For example, it doesn't work in French, since an odd number is 

impair, while an odd person or event is etrange or bizarre. 
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this process, we can create a list of primes that is as long as we want. This shows 

that there must be infinitely many prime numbers. D 

Euclid's proof is very clever and beautiful. We will illustrate the ideas in Eu

clid's proof by using them to create a list of primes. We start with a list consisting 

of the single prime { 2}. Following Euclid, we compute A = 2 + 1 = 3. This A 

is already prime, so we append it to our list. Now we have two primes, {2, 3}. 
Again using Euclid's argument, we compute A = 2 · 3 + 1 = 7, and again A 

is prime and can be added to the list. This gives three primes, {2, 3, 7}. Re

peating the argument gives A = 2 · 3 · 7 + 1 = 43, another prime! So now 

our list has four primes, {2, 3, 7, 43}. Into the breach once more, we compute 

A= 2 · 3 · 7 · 43 + 1 = 1807. This time, A is not prime, it factors as A= 13 · 139. 
We add 13 to our list, which now reads {2, 3, 7, 43, 13}. One more time, we com

pute A= 2 · 3 · 7 · 43 · 13 + 1 = 23479. This A also factors, A = 53 · 443. This 

gives the list {2, 3, 7, 43, 13, 53}, and we will stop here. But in principle we could 

continue this process to produce a list of primes of any specified length. 

We now know that the list of primes continues without end, and we also ob

served that 2 is the only even prime. Every odd number is congruent to either 1 
or 3 modulo 4, so we might ask which primes are congruent to 1 modulo 4 and 

which are congruent to 3 modulo 4. This separates the set of (odd) primes into 

two families, just as the periodic table separates the elements into families having 

similar properties. In the following list, we have boxed the primes congruent to 1 
modulo 4: 

3,[1), 7, 11,[!1],[!2], 19,23,l29l,31,[}ZJ,[±I],43,47,�,59, 

@!], 67, 11, I 13 I, 79, 83, I s9 I, I 91 I, []QI], .... 

There doesn't seem to be any obvious pattern, although there do seem to be plenty 

of primes of each kind. Here's a longer list. 

p _ 1(mod4) 

p - 3 (mod 4) 

5,13,17,29,37,41,53,61,73,89,97,101,109, 
113,137,149,157,173,181,193,197, ... 

3, 7,ll,19,23,31,43,47,59,67,71,79,83,103, 
107,127,131,139,151,163,167,179, ... 

Is it possible that one of the lines in this list eventually stops, or are there 

infinitely many primes in each family? It turns out that each line continues indef

initely. We will use a variation of Euclid's proof to show that there are infinitely 

many primes congruent to 3 modulo 4. In Chapter 21 we use a slightly different 

argument to deal with the 1 modulo 4 primes. 
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Theorem 12.2 (Primes 3 (Mod 4) Theorem). There are infinitely many primes that 

are congruent to 3 modulo 4. 

Proof We suppose that we have already compiled a (finite) list of primes, all of 

which are congruent to 3 modulo 4. Our goal is to make the list longer by finding 

a new 3 modulo 4 prime. Repeating this process gives a list of any desired length, 

thereby proving that there are infinitely many primes congruent to 3 modulo 4. 

Suppose that our initial list of primes congruent to 3 modulo 4 is 

Consider the number 

A= 4p1p2 · · · Pr + 3. 

(Notice that we don't include the prime 3 in the product.) We know that A can be 

factored into a product of primes, say 

I claim that among the primes qi, q2, ... , q8 at least one of them must be congruent 

to 3 modulo 4. This is the key step in the proof. Why is it true? Well, if not, 

then qi, q2, ... , q8 would all be congruent to 1 modulo 4, in which case their prod

uct A would be congruent to 1 modulo 4. But you can see from its definition that A 

is clearly congruent to 3 modulo 4. Hence, at least one of qi, q2, ... , q8 must be 

congruent to 3 modulo 4, say qi - 3 (mod 4). 
My second claim is that qi is not in the original list. Why not? Well, we 

know that qi divides A, while it is clear from the definition of A that none of 

3, Pl, p2, ... , Pr divides A. Thus, qi is not in our original list, so we may add 

it to the list and repeat the process. In this way we can create as long a list as 

we want, which shows that there must be infinitely many primes congruent to 3 

modulo4. D 

We can use the ideas in the proof of the Primes 3 (Mod 4) Theorem to create 

a list of primes congruent to 3 modulo 4. We need to start with a list containing 

at least one such prime, and remember that 3 is not allowed in our list. So we 

start with the list consisting of the single prime {7}. We compute A = 4 · 7 + 
3 = 31. This A is itself prime, so it is a new 3 (mod 4) prime to add to our 

list. The list now reads {7, 31}, so we compute A= 4 · 7 · 31 + 3 = 871. This A 

is not prime; it factors as A= 13 · 67. The proof of the theorem tells us that at 

least one of the prime factors will be congruent to 3 modulo 4. In this case, the 

prime 67 is 3 (mod 4), so we add it to our list. Next we take {7, 31, 67}, compute 

A = 4 · 7 · 31 · 67 + 3 = 58159, and factor it as A = 19 · 3061. This time it is the 
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first factor 19 that is 3 (mod 4) , so our list becomes {7, 31, 67, 19}. We will repeat 

the process one more time. So 

A= 4 · 7 · 31 · 67 · 19 + 3 = 1104967 = 179 · 6173, 

which gives the prime 179 to add to the list, {7, 31, 67, 19, 179}. 
Why won't the same idea work for 1 (mod 4) primes? This is not an idle 

question; it's almost as important to understand the limitations of an argument as 

it is to understand why the argument is valid. So suppose we try to create a list 

of 1 (mod 4) primes. If we start with the list {p1, P 2, ... , Pr}, we can compute 

the number A = 4p1p2 · · · Pr + 1, factor it, and try to find a prime factor that is 

a new 1 (mod 4) prime. What happens if we start with the list { 5}? We compute 

A= 4 · 5 + 1 = 21 = 3 · 7, and neither of the factors 3 or 7 is a 1 (mod 4) num

ber. So we're stuck. The problem is that it is possible to multiply two 3 (mod 4) 
numbers, such as 3 and 7, and end up with a 1 (mod 4) number like A = 21. In 

general, we cannot use the fact that A 1 (mod 4) to deduce that some prime fac

tor of A is 1 (mod 4) , and that's why this proof won't work for primes congruent 

to 1 modulo4. 

There is no particular reason to consider only congruences modulo 4. For 

example, every number is congruent to either 0, 1, 2, 3, or 4 modulo 5; and except 

for 5 itself, every prime number is congruent to one of 1, 2, 3, or 4 modulo 5. 

(Why?) So we can break up the set of prime numbers into four families, depending 

on their congruence class modulo 5. Here's a list of the first few numbers in each 

family: 

p = 1 (mod 5) 11,31,41,61,71,101,131,151,181,191,211,241 

p = 2 (mod 5) 2,7,17,37,47,67,97,107,127,137,157,167,197 

p - 3 (mod 5) 3,13,23,43,53, 73,83,103,113,163,173,193,223 

P - 4 (mod 5) 19,29,59,79,89,109,139,149,179,199,229,239 

Again there seem to be lots of primes in each family, so we might guess that each 

contains infinitely many prime numbers. 

In general, if we fix a modulus m and a number a, when might we expect 

there to be infinitely many primes congruent to a modulo m? There is one sit

uation in which this cannot happen, that is if a and m have a common factor. 

For example, suppose that p is a prime and that p _ 35 (mod 77). This means 

that p = 35 + 77y = 7(5 + lly ) , so the only possibility is p = 7, and even p = 7 
doesn't work. Generally, if p is a prime satisfying p = a (mod m ) , then gcd (a, m ) 
divides p. So either gcd( a, m ) = 1 or else gcd( a, m) = p, which means there is at 

most one possibility for p. Thus, it is really only interesting to ask about primes 
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congruent to a modulo m if we assume that gcd( a, m) = 1. A famous theorem of 

Dirichlet from 1837 says that with this assumption there are always infinitely many 

primes congruent to a modulo m. 

Theorem 12.3 (Dirichlet's Theorem on Primes in Arithmetic Progressions3). Let a 
and m be integers with gcd( a, m) = 1. Then there are in.finitely many primes that 
are congruent to a modulo m. That is, there are in.finitely many prime numbers p 
satisfying 

p =a (mod m) . 

Earlier in this chapter we proved Dirichlet's Theorem for (a, m) = (3, 4), and 

Exercise 12.2 asks you to do (a, m) = (5, 6). In Chapter 21, we will deal with 

(a, m) = (1, 4). Unfortunately, the proof of Dirichlet's Theorem for all (a, m) is 

quite complicated, so we will not be able to give it in this book. The proof uses 

advanced methods from calculus and, in fact, calculus with complex numbers! 

Exercises 

12.1. Start with the list consisting of the single prime {5} and use the ideas in Euclid's

proof that there are infinitely many primes to create a list of primes until the numbers get 

too large for you to easily factor. (You should be able to factor any number less than 1000.) 

12.2. (a) Show that there are infinitely many primes that are congruent to 5 modulo 6. 
[Hint. Use A = 6p1p2 ···Pr + 5.]

(b) Try to use the same idea (with A= 5p1p2 ···Pr+ 4) to show that there are infinitely

many primes congruent to 4 modulo 5. What goes wrong? In particular, what happens

if you start with { 19} and try to make a longer list?

12.3. Let p be an odd prime number. Write the quantity 

1 1 1 1 
1+-+-+-+···+ --

2 3 4 p-1 

as a fraction Ap/ Bp in lowest terms.

(a) Find the value of AP (mod p) and prove that your answer is correct.

(b) Make a conjecture for the value of AP (mod p2).
(c) Prove your conjecture in (b). (This is quite difficult.)

3 An arithmetic progression is a list of numbers with a common difference. For example, 2, 7, 

12, 17, 22, ... is an arithmetic progression with common difference 5. The numbers congruent to a 
modulo m form an arithmetic progression with common difference m, which explains the name of 

Dirichlet's Theorem. 
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12.4. Let m be a positive integer, let a1, a2, ... , ac/>( m) be the integers between 1 and m 

that are relatively prime to m, and write the quantity 

as a fraction Am/ Bm in lowest terms.

(a) Find the value of Am (mod m) and prove that your answer is correct.

(b) Generate some data for the value of Am (mod m 
2) , try to find patterns, and then

try to prove that the patterns you observe are true in general. In particular, when is 

Am - 0 (mod m
2) ?

12.5. Recall that the number n factorial, which is written n! , is equal to the product 

n! = 1 · 2 · 3 · · · (n - 1) · n. 

(a) Find the highest power of 2 dividing each of the numbers 1!, 2!, 3!, ... , 10!. 
(b) Formulate a rule that gives the highest power of 2 dividing n!. Use your rule to 

compute the highest power of 2 dividing 100 ! and 1000 ! . 
( c) Prove that your rule in (b) is correct. 

(d) Repeat (a), (b), and (c), but this time for the largest power of 3 dividing n!. 

(e) Try to formulate a general rule for the highest power of a prime p that divides n!. Use 

your rule to find the highest power of 7 dividing 1000! and the highest power of 11 
dividing 5000!. 

(f) Using your rule from ( e) or some other method, prove that if p is prime and if pm

divides n! then m < n/(p - 1). (This inequality is very important in many areas of

advanced number theory.) 

12.6. (a) Find a prime p satisfying p - 1338 (mod 1115). Are there infinitely many such

primes? 

(b) Find a prime p satisfying p = 1438 (mod 1115). Are there infinitely many such

primes? 



Chapter 13 

Counting Primes 

How many prime numbers are there? We have already given the answer that there 

are infinitely many. Of course, there are also infinitely many composite numbers. 

W hich are there more of, primes or composites? Despite the fact that there are 

infinitely many of each, we can compare them by using a counting function. 

First, let's start with an easier question that will illustrate the underlying idea. 

Our intuition says that approximately half of all numbers are even. We can put this 

intuition onto firmer ground by looking at the even number counting function: 

E(x) = #{even numbers n with 1 < n < x }. 

This function counts how many even numbers there are less than or equal to x. For

example, 

E(3) = 1, E(4) = 2, E(5) = 2,

E(lOO) = 50, E(lOl) = 50, .... 

To study what fraction of all numbers are even, we should look at the ratio E ( x) / x. 
Thus, 

E(3) 1 
3 3' 

E(lOO) 
100 

E(4) 1 E(5) 2 

4 2' 5 5' 
1 E(lOl) 50 
2' 101 101' ....

It is certainly not true that the ratio E ( x) / x is always equal to ! , but it is true that

when x is large E ( x) / x will be close to ! . If you have taken a little bit of calculus,

you will recognize that we are trying to say that 

lim 
E ( x) 

=
_!_.

X-?00 X 2 
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This statement1 just means that as x gets larger and larger the distance between 
E ( x) / x and � gets closer and closer to 0. 

Now let's do the same thing for prime numbers. The counting function for 
prime numbers is called 7r(x ), where "7r" is an abbreviation for "prime." (This use 
of the Greek letter 7r has nothing to do with the number 3 .1415 9 .... ) Thus 

7r( x) = #{primes p with p < x} 

For example, 7r(l0) = 4, since the primes less than 10 are 2, 3, 5, and 7. Similarly, 
the primes less than 60 are 

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59, 

so 7r(60) = 17. Here's a short table giving the values of 7r(x) and the ratio 7r(x)/x. 

x 10 25 50 100 200 500 1000 5000 
7r(x) 4 9 15 25 46 95 168 669 

7r(x)/x 0.40 0 0.360 0.30 0  0.250 0.230 0.190 0.168 0.134 

It certainly looks like the ratio 7r ( x) / x is getting smaller and smaller as x gets 
larger. Assuming that this pattern continues, we would be justified in saying that 
"most numbers are not prime." This raises the further question of just how rapidly 
7r( x) / x decreases. The answer is provided by the following celebrated result, 
which is one of the pinnacles of nineteenth-century number theory. 

Theorem 13.1 (The Prime Number Theorem). When x is large, the number of 
primes less than x is approximately equal to x / ln(x ). In other words, 

lim 
7r

(
x
) = 1. 

x---+oo x / ln( x) 

The quantity ln(x ), which is called the natural logarithm of x, is the logarithm 
of x to the base e = 2. 7182818 ... . 2 Here is a table that compares the values 

1This mathematical statement is read "the limit, as x goes to infinity, of E(x)/x is equal to 1/2." 
2If you are not familiar with natural logarithms, you can just think of ln(x) as being approxi

mately equal to 2.30259 log(x), where log(x) is the usual logarithm to the base 10. The natural 

logarithm is so important in mathematics and science that most scientific calculators have a special 

button to compute it. The natural logarithm appears "naturally" in problems involving compound 

growth, such as population growth, interest payments, and decay of radioactive materials. It is a 

wonderful fact that this widely applicable function also appears in the purely mathematical problem 

of counting prime numbers. 
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of 7r(x) and x/ ln(x). 

x 10 100 1000 104 106 109 

7r(x) 4 25 168 1229 78498 5084 753 4 

x/ ln(x) 4.3 4 2 1.7 1 1 4 4.76 1085.7 4 72382.4 1 4825 49 42.43 

7f ( x) / ( x / in ( x)) 0.92 1 1.15 1 1.16 1 1.132 1.084 1.05 4 

By examining similar, but shorter, tables around 1800, Carl Friedrich Gauss and 

Adrien-Marie Legendre independently were led to conjecture that the Prime Num

ber Theorem should be true. Almost a century passed before a proof was found. 

In 1896 Jacques Hadamard and Ch. de la Vallee Poussin each managed to prove the 

Prime Number Theorem. Just as with Dirichlet's Theorem, the proof uses meth

ods from complex analysis (i.e., calculus with complex numbers). More recently, 

in 1948, Paul Erdos and Atle Selberg found an "elementary" proof of the Prime 

Number Theorem. Their proof is elementary in the sense that it does not require 

methods from complex analysis, but it is by no means easy, so we are not able to 

present it here. 

It is somewhat surprising that to prove theorems about whole numbers, such 

as Dirichlet's Theorem and the Prime Number Theorem, mathematicians have to 

use tools from calculus. An entire branch of mathematics called Analytic Number 

Theory is devoted to proving theorems in number theory using calculus methods. 

There are many famous unsolved problems involving prime numbers. We con

clude this chapter by describing three such problems with a little bit of their history. 

Conjecture 13.2 (Goldbach's Conjecture). Every even number n > 4 is a sum of 
two primes. 

Goldbach proposed this conjecture to Euler in a letter dated June 7, 1742. It is 

not hard to check that Goldbach's Conjecture is true for the first few even numbers. 
Thus, 

4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 3 + 7, 12 = 5 + 7, 

1 4  = 3 + 1 1, 16 = 3 + 13, 18 = 5 + 13, 20 = 7 + 13 .... 

This verifies Goldbach's Conjecture for all even numbers up to 20. Using comput

ers, Goldbach's conjecture has been checked for all even numbers up to 2 · 1010. 

Even better, mathematicians have been able to prove results that are similar to 

Goldbach's Conjecture. These suggest that Goldbach's Conjecture is also true. 

One such theorem was proved by I.M. Vinogradov in 1937. He showed that every 

(sufficiently large) odd number n is a sum of three primes. A second theorem, 
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proved by Chen Jing-run in 1966, says that every (sufficiently large) even number 

is a sum of two numbers p + a, where p is a prime number and a is either prime or 

a product of two primes. 

Conjecture 13.3 (The Twin Primes Conjecture). There are infinitely many prime 
numbers p such that p + 2 is also prime. 

The list of prime numbers is quite irregular, and there are often very large gaps 

between consecutive primes. For example, there are 111 composite numbers fol

lowing the prime 3 70, 261. On the other hand, there seem to be quite a few instances 

in which a prime pis followed almost immediately by another prime p + 2. (Of 

course, p + 1 cannot be prime, since it is even.) These pairs are called twin primes, 
and the Twin Primes Conjecture says that the list of twin primes should never end. 

The first few twin primes are 

(3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61), (71, 73), 

(101, 103), (107, 109), (137, 139), (149, 151), (179, 181), (191, 193), 

(197, 199), (227, 229), (239, 241), (269, 271), (281, 283), (311, 313). 

Just as with Goldbach's Conjecture, people have used computers to compile long 

lists of twin primes, including, for example, the tremendous pair consisting of 

242206083 . 238880 - 1 and 242206083 . 238880 + 1. 

As further evidence for the validity of the conjecture, Chen Jing-run proved in 1966 

that there are infinitely many primes p such that p + 2 is either a prime or a product 

of two primes. 

Conjecture 13.4 (The N2 + 1 Conjecture). There are infinitely many primes of the 
form N2 + 1. 

If N is odd, then N2 + 1 is even, so it cannot be prime (unless N = 1). 
However, if N is even, then N2 + 1 seems frequently to be prime. The N2 + 1 
Conjecture says that this should happen infinitely often. The first few primes of 

this form are 

22 + 1 = 5, 42 + 1 = 17, 62 + 1 = 37, 102 + 1 = 101, 

142 + 1 = 197, 162 + 1 = 257, 202 + 1 = 401, 242 + 1 = 577, 

262 + 1 = 677, 362 + 1 = 1297, 402 + 1 = 1601. 

The best result currently known was proved by Henryk Iwaniec in 1978. He 

showed that there are infinitely many values of N for which N2 + 1 is either prime 

or a product of two primes. 
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Although no one knows if there are infinitely many twin primes or infinitely 
many primes of the form N2 + 1, mathematicians have guessed what their counting
functions should look like. Let 

T(x) = #{primes p < x such that p + 2 is also prime}, 

S ( x) = #{primes p < x such that p has the form N2 + 1}.

Then it is conjectured that 

Iim 
T(x) 

= C 
x--+oo x /(In x )2

and lim 
S(x) 

= C'
.

x--+oo fa/ In X 

The numbers C and C' are a bit complicated to describe precisely. For example, C
is approximately equal to 0.66016. 

Exercises 

13.1. (a) Explain why the statement "one-fifth of all numbers are congruent to 2 mod
ulo 5" makes sense by using the counting function 

F ( x) = #{positive numbers n ::::; x satisfying n 2 (mod 5)}. 

(b) Explain why the statement "most numbers are not squares" makes sense by using the 
counting function 

S ( x) = # {square numbers less than x}. 

Find a simple function of x that is approximately equal to S ( x) when x is large. 

13.2. (a) Check that every even number between 70 and 100 is a sum of two primes. 
(b) How many different ways can 70 be written as a sum of two primes 70 = p + q with

p ::::; q? Same question for 90? Same question for 98? 

13.3. The number n! (n factorial) is the product of all numbers from 1 ton. For example, 
4 ! = 1 · 2 · 3 · 4 = 24 and 7! = 1 · 2 · 3 · 4 · 5 · 6 · 7 = 5040. If n > 2, show that all the 
numbers 

n! + 2, n! + 3, n! + 4, 

are composite numbers. 

... ' n! + (n - 1), n! +n 

13.4. (a) Do you think there are infinitely many primes of the form N2 + 2? 
(b) Do you think there are infinitely many primes of the form N2 - 2? 
(c) Do you think there are infinitely many primes of the form N2 + 3N + 2? 
(d) Do you think there are infinitely many primes of the form N2 + 2N + 2? 
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13.5. The Prime Number Theorem says that the number of primes smaller than x is approx
imately x / ln( x). This exercise asks you to explain why certain statements are plausible.
So do not try to write down formal mathematical proofs. Instead, explain as convincingly 
as you can in words why the Prime Number Theorem makes each of the following state
ments reasonable. 

(a) If you choose a random integer between 1 and x, then the probability that you chose
a prime number is approximately 1 / ln ( x).

(b) If you choose two random integers between 1 and x, then the probability that both of
them are prime numbers is approximately 1 / (ln x) 

2
•

( c) The number of twin primes between 1 and x should be approximately x / (ln x) 
2
.

[Notice that this explains the conjectured limit formula for the twin prime counting 
function T(x).] 

13.6. (This exercise is for people who have taken some calculus.) The Prime Number The
orem says that the counting function for primes, 7r ( x), is approximately equal to x / ln ( x)
when x is large. It turns out that 7r ( x) is even closer to the value of the definite integral
f2x dt/ ln(t). 

(a) Show that 

lim 
x-too 

This means that J2x dt / ln ( t) and x / ln ( x) are approximately the same when x is
large. [Hint. Use L'Hopital's rule and the Second Fundamental Theorem of Calcu
lus.] 

(b) It can be shown that 

J ____!!!___ = ln(ln(t)) ln(t) (ln(t))2 (ln(t))3 (ln(t))4 ... .
In ( t) + + 2 · 2 ! + 3 · 3 ! + 4 · 4 ! + 

Use this series to compute numerically the value of J2x dt/ ln(t) for x = 10, 100, 
1000, 104, 106, and 109. Compare the values you get with the values of n(x)
and x / ln ( x) given in the table on page 92. Which is closer to 7r ( x), the integral
J2x dt / ln ( t) or the function x / In ( x)? (This problem can be done with a simple cal
culator, but you'll probably prefer to use a computer or programmable calculator.) 

(c) Differentiate the series in (b) and show that the derivative is actually equal to 1/ ln(t). 
[Hint. Use the series for ex.]



Chapter 14 

Mersenne Primes 

In this chapter we will study primes that can be written in the form an - 1 with

n > 2. For example, 31 is such a prime, since 31 = 25 - 1. The first step is to look

at some data. 

22 - 1 = 3 23 - 1 = 7 24 - 1 = 3. 5 25 - 1 = 31 

32 - 1 = 23 33 - 1=2.13 34 - 1 = 24. 5 35 - 1=2.112 

42 - 1 = 3. 5 43 - 1 = 32. 7 44 - 1=3.5.17 45 - 1 = 3. 11 . 31 

52 - 1 = 23. 3 53 - 1 = 22. 31 54 - 1 = 24 . 3 . 13 55 - 1 = 22 . 11 . 71 

62 - 1 = 5. 7 63 - 1=5.43 64 - 1 = 5 . 7 . 37 65 - 1 = 52 . 311 

72 - 1=24.3 73 - 1 = 2 . 32 . 19 74 - 1 = 25 . 3 . 52 75 - 1 = 2 . 3 . 2801 

82 - 1 = 32. 7 83 - 1 = 7. 73 84 - 1 = 32 . 5 . 7 . 13 85 - 1 = 7. 31 . 151 

An easy observation is that if a is odd then an - 1 is even, so it cannot be prime.

Looking at the table, we also see that it appears that an - 1 is always divisible by

a - 1. This observation is indeed true. We can prove that it is true by using the

famous formula for the sum of a geometric series: 

xn - 1 = (x - l)(xn-l + xn-2 + · · · + x2 + x + 1). Geometric Series 

To check this Geometric Series formula, we multiply out the product on the 

right. Thus, 

(x - l)(xn-l + xn-2 + · · · + x2 + x + 1) 

= x · (xn-l + xn-2 + · · · + x2 + x + 1) 

- 1 · (xn-l + xn-2 + · · · + x2 + x + 1) 
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= (xn + xn-1 + ... + x3 + x2 + x) 

-(xn-1 + xn-2 + ... + x2 + x + 1) 

since all the other terms cancel. 

Using the Geometric Series formula with x = a, we see immediately that 

an -1 is always divisible by a -1. So an -1 will be composite unless a -1 = 1, 
that is, unless a = 2. 

However, even if a = 2, the number 2n -1 is frequently composite. Again we 

look at some data: 

n 2 3 4 5 6 7 8 9 10 

2n -1 3 7 3.5 31 32. 7 127 3·5·17 7. 73 3. 11 . 31 

Even this short table suggests the following: 

When n is even, 2n -1 is divisible by 3 = 22 -1. 

When n is divisible by 3, 2n -1 is divisible by 7 = 23 -1. 

When n is divisible by 5, 2n -1 is divisible by 31 = 25 -1. 

So we suspect that if n is divisible by m, then 2n -1 will be divisible by 2m -1. 
Having made this observation, it is easy to verify that it is true. So suppose 

that n factors as n = mk. Then 2n = 2mk = (2m )k. We use the Geometric Series 

formula with x = 2m to obtain 

This shows that if n is composite then 2n -1 is composite. We have verified the 

following fact. 

Proposition 14.1. If an -1 is prime for some numbers a > 2 and n > 2, then a 

must equal 2 and n must be a prime. 

This means that if we are interested in primes of the form an -1 we only need 

to consider the case that a = 2 and n is prime. Primes of the form 

are called Mersenne primes. The first few Mersenne primes are 

22 -1 = 3, 23 -1 = 7, 25 -1 = 31, 27 -1 = 127, 213 -1 = 8191. 
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Of course, not every number 2P - 1 is prime. For example, 

211 - 1 = 2047 = 23 · 89 and 229 - 1 = 536870911 = 233 · 1103 · 2089. 

The Mersenne primes are named after Father Marin Mersenne (1588-1648), 

who asserted in 1644 that 2P - 1 is prime for 

p= 2,3,5,7,13,17,19,31,67,127,257 

and that these are the only primes less than 258 for which 2P - 1 is prime. It is not 

known how Mersenne discovered these "facts," especially since it turns out that his 

list is not correct. The complete list of primes p less than 10000 for which 2P - 1 
is prime is1 

p= 2,3,5,7,13,17,19,31,61,89,l07,127,521,607,1279, 

2203,2281,3217,4253,4423,9689,9941. 

It is a nontrivial problem to check a large number for primality, and indeed it 

wasn't until 1876 that E. Lucas proved conclusively that 2127 - 1 is prime. Lu

cas's 39-digit number remained the largest known prime until the 1950s, when the 

advent of electronic computing machines made it possible to check numbers with 

hundreds of digits for primality. Table 14.1 lists Mersenne primes that have been 

discovered in recent years using computers, together with the names of the peo

ple who made the discoveries. The largest known prime has more than 12 million 

digits! 

The most recent Mersenne primes in Table 14.1 were unearthed using special

ized software as part of Woltman's Great Internet Mersenne Prime Search. You, 

too, can take part in the search for world record primes2 by downloading software 

from the GIMPS website 

www.mersenne.org/prime.htm 

Further historical and topical information about Mersenne primes is available at 

www.utm.edu/research/primes/mersenne.shtml 

Of course, although it is interesting to see a list like this of the world's largest 

known primes, there is no huge mathematical significance in finding a few more 

Mersenne primes. Far more interesting from a mathematical perspective is the 

following question. The answer is not known. 

1Notice that Father Mersenne made five mistakes, three of omission (61, 89, 107) and two of 
commission (67, 257). 

2 Andy Warhol opined that in the future everyone will be famous for 15 minutes. One route to 
such fame is to find the largest known (Mersenne) prime. And the quest for bigger and better primes 
continues. 
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p I Discovered by I Date I 
521,607 

p Discovered by J Date I 

1279, 2203 Robinson 1952 
2281 

3217 Riesel 1957 

4253 
Hurwitz 1961 

4423 

9689 
9941 Gillies 1963 

11213 

19937 Tuckerman 1971 

21707 
Noll 

1978 
Nickel 

23209 Noll 1979 

44497 
Noll 

1979 
Slowinski 

86243 Slowinski 1982 

132049 Slowinski 1983 

216091 Slowinski 1985 

110503 
Colquitt 

1988 
Welsch 

756839 
Slowinski 

Gage 

859433 
Slowinski 

Gage 

1257787 
Slowinski 

Gage 

1398269* Armengaud 

2976221 * Spence 

3021377* Clarkson 

6972593* Hajratwala 

13466917* Cameron 

20996011 * Shafer 

24036583* Findley 

25964951* Nowak 

30402457* Boone, Cooper 

32582657* Boone, Cooper 

37156667* Elvenich 

42643801* Strindmo 

43112609* Smith 

Table 14.1: Primes p > 500 for Which 2P - 1 Is Known to be Prime 

*Discovered with GIMPS (Woltman, Kurokowski, ... )

1992 

1994 

1996 

1996 

1997 

1998 

1999 

2001 

2003 

2004 

2005 

2005 

2006 

2008 

2009 

2008 

Question 14.2. Are there infinitely many Mersenne primes, or does the list of 

Mersenne primes eventually stop? 

Exercises 

14.1. If an+ 1 is prime for some numbers a 2:: 2 and n 2:: 1, show that n must be a power

of 2. 

14.2. Let Fk = 22k + 1. For example, F1 = 5, F2 = 17, F3 = 257, and F4 = 65537. 
Fermat thought that all the Fk 's might be prime, but Euler showed in 1732 that F5 factors

as 641 · 6700417, and in 1880 Landry showed that F6 is composite. Primes of the form

Fk are called Fermat primes. Show that if k -=f. m, then the numbers Fk and Fm have no

common factors; that is, show that gcd(Fk, Fm) = 1. [Hint. If k > m, show that Fm 
divides Fk - 2.]

14.3. The numbers 3n -1 are never prime (if n 2:: 2), since they are always even. However,

it sometimes happens that (3n -1) /2 is prime. For example, (33 -1) /2 = 13 is prime.

(a) Find another prime of the form (3n - 1)/2. 
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(b) If n is even, show that (3n - 1)/2 is always divisible by 4, so it can never be prime. 

(c) Use a similar argument to show that if n is a multiple of 5 then (3n - 1)/2 is never a 

pnme. 

(d) Do you think that there are infinitely many primes of the form (3n - 1) /2? 



Chapter 15 

Mersenne Primes and Perfect 

Numbers 

The ancient Greeks observed that the number 6 has a surprising property. If you 

take the proper divisors of 6, that is, the divisors other than 6 itself, and add them 

up, you get back the number 6. Thus, the proper divisors of 6 are 1, 2, and 3, and 

when you add these divisors, you get 

1+2 + 3 = 6. 

This property is rather rare, as can be seen by looking at a few examples: 

n Sum of Proper Divisors of n 

6 1+2+3=6 Sum is just right (perfect!). 

10 1+2+5=8 Sum is too small. 

12 1 + 2 + 3 + 4 + 6 = 16 Sum is too large. 

15 1+3+5=9 Sum is too small. 

20 1 + 2 + 4 + 5 + 10 = 22 Sum is too large. 

28 1 + 2 + 4 + 7 + 14 == 28 Sum is just right (perfect!). 

45 1 + 3 + 5 + 9 + 15 = 33 Sum is too small. 

The Greeks called these special numbers perfect. That is, a perfect number is a 

number that is equal to the sum of its proper divisors. So far, we have discovered 

two perfect numbers, 6 and 28. Are there others? 

The Greeks knew a method for finding some perfect numbers and, interestingly 

enough, their method is closely related to the Mersenne primes that we studied in 

the previous chapter. The following assertion occurs as Proposition 36 of Book IX 

of Euclid's Elements. 
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Theorem 15.1 (Euclid's Perfect Number Formula). If 2P -1 is a prime number, 
then 2p-l ( 2P -1) is a perfect number. 

The first two Mersenne primes are 3 = 22 -1 and 7 = 23 -1. Euclid's Per

fect Number Formula applied to these two Mersenne primes gives the two perfect 

numbers we already know, 

and 23-1(23 -1) = 28. 

The next Mersenne prime is 25 -1 = 31, and Euclid's formula gives us a new 

perfect number, 

25-1(25 -1) = 496. 

To check that 496 is perfect, we need to sum its proper divisors. Factoring 496 = 

24 · 31, we see that the proper divisors of 496 are 

1, 2, 22, 23, 24 and 31, 2 · 31, 22 · 31, 23 · 31. 

We could just add these numbers, but to illustrate the general method we will sum 

them in two stages. First 

1 + 2 + 22 + 23 + 24 = 31, 

and second 

31 + 2. 31 + 22 . 31 + 23. 31 = 31(1 + 2 + 22 + 23) = 31 . 15. 

Now adding the two pieces gives 31 + 31 · 15 = 31 · 16 = 496, so 496 is indeed 

perfect. 

Using the same sort of idea, we can easily verify that Euclid's Perfect Number 

Formula is true in general. We let q = 2P -1, and we need to check that 2P-1q is 

a perfect number. The proper divisors of 2p-l q are 

1,2,4, ... ,2P-l and q,2q,4q, ... ,2P-2q. 

We add these numbers using the formula for the Geometric Series on page 96. The 

Geometric Series formula (slightly rearranged) says that 

xn -1 
1 + x + x2 + · · · + xn-l = --

x -1 

Putting x = 2 and n = p, we get 

2P -1 
1 + 2 + 4 + · · · + 2p-l = = 2P -1 = q. 

2-1 
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And we can use the formula with x = 2 and n = p - 1 to compute 

q + 2q + 4q + ... + 2P-2q = q(l + 2 + 4 + ... + 2P-2) 

= q c
p

;� � 
1

) 
= q(2p-l - 1). 

So if we add all the proper divisors of 2p-l q, we get 
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1+2 + 4 + · · · + 2p-l + q + 2q + 4q + · · · + 2P-2q = q + q(2p-l - 1) = 2P-1q. 

This shows that 2p-l q is a perfect number. 

We can use Euclid's Perfect Number Formula to write down many more perfect 

numbers. In fact, we get one perfect number for each Mersenne prime that we 

can find. The first few perfect numbers obtained in this fashion are listed in the 

following table. As you will observe, the numbers get large rather quickly. 

p 2 3 5 7 13 17 

2P-1(2P - 1) 6 28 496 8128 33550336 8589869056 

We can also list perfect numbers that are incredibly huge. For example, 

2756838(2756839 - 1) and 2859432(2859433 - 1) 

are perfect numbers. The latter has more than half a million digits! 

A natural question to ask at this point is whether Euclid's Perfect Number For

mula actually describes all perfect numbers. In other words, does every perfect 

number look like 2P-1(2P - 1) with 2P - 1 prime, or are there other perfect num

bers? Approximately 2000 years after Euclid's death, Leonhard Euler showed that 

Euclid's formula at least gives all even perfect numbers. 

Theorem 15.2 (Euler's Perfect Number Theorem). If n is an even perfect number, 
then n looks like 

where 2P - 1 is a Mersenne prime. 

We will prove Euler's theorem at the end of this chapter, but first we need to 

discuss a function that will be needed for the proof. This function, which is denoted 

by the Greek letter a (sigma), is equal to 

a (n) =sum of all divisors of n (including 1 and n) . 
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Here are a few examples: 

0"(6) = 1 + 2 + 3 + 6 = 12 
0"(8) = 1 + 2 + 4 + 8 = 15 

0"(18) = 1 + 2 + 3 + 6 + 9 + 18 = 39. 
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We can also give some general formulas. For example, if p is a prime number, then 

its only divisors are 1 and p, so O"(p) = p + 1. More generally, the divisors of a 

. k h b 1 2 k pnme power p are t e num ers ,p,p , ... ,p , so 

pk+l 1 ()"(pk) = 1 + p + p2 + ... + pk 
= 

-

. 
p-1 

To study the sigma function further, we make a short table of its values. 

O"(l) = 1 0"(2) = 3 0"(3) = 4 0"(4) = 7 0"(5) = 6 
0"(6) = 12 0"(7) = 8 0"(8) = 15 0"(9) = 13 0"(10) = 18 

0"(11) = 12 0"(12) = 28 0"(13) = 14 0"(14) = 24 0"(15) = 24 
0"(16) = 31 0"(17) = 18 0"(18) = 39 0"(19) = 20 0"(20) = 42 
0"(21) = 32 0"(22) = 36 0"(23) = 24 0"(24) = 60 0"(25) = 31 
0"(26) = 42 0"(27) = 40 0"(28) = 56 0"(29) = 30 0"(30) = 72 
0"(31) = 32 0"(32) = 63 0"(33) = 48 0"(34) = 54 0"(35) = 48 
0"(36) = 91 0"(37) = 38 0"(38) = 60 0"(39) = 56 O"( 40) = 90 
0"(41) = 42 O"( 42) = 96 O"( 43) = 44 O"( 44) = 84 O"( 45) = 78 
O"( 46) = 72 0"(47) = 48 O"( 48) = 124 O"( 49) = 57 0"(50) = 93 
0"(51) = 72 0"(52) = 98 0"(53) = 54 0"(54) = 120 0"(55) = 72 
0"(56) = 120 0"(57) = 80 0"(58) = 90 0"(59) = 60 0"(60) = 168 
0"(61) = 62 0"(62) = 96 0"(63) = 104 0"(64) = 127 0"(65) = 84 

An examination of this table reveals that O"( mn) is frequently equal to the product 

O"( m )O"( n) and, after a little further analysis, we notice that this seems to be true 

when m and n are relatively prime. Thus, the sigma function appears to obey the 

same sort of multiplication formula as the phi function that we studied in Chap

ter 11. We record this rule, together with the formula for O"(pk). 

Theorem 15.3 (Sigma Function Formulas). (a) If pis a prime and k > 1, then 

pk+l - 1 ()"(pk) = 1 + p + p2 + ... + pk 
= . 

p-1 

(b) If gcd(m, n) = 1, then 

O"(mn) = O"(m)O"(n). 
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Just as with the phi function, we can use the sigma function formulas to easily 

compute a( n) for large values of n. For example, 

and 

a(16072) = a(23 
• 72 

· 41) 

= a(23) · a(72) · a( 41) 

= (1 + 2 + 22 + 23)(1+7+72)(1+41) 

= 15 . 57. 42 = 35910, 

a(800000) = a(28 
· 55) 

= 

( 29 -1) ( 56 -1) 
2-1 5-1 

= 511 . 
15624 

= 1995966 
4 . 

At this point you probably expect that I will show you how to prove the multi

plication formula for the sigma function. But I won't! You have now made enough 

progress in number theory that it is time for you to start acting as a mathematician 

yourself.1 So I am going to ask you to prove the formula a( mn) = a( m )a( n) 
for relatively prime integers m and n. Don't be discouraged and give up if you 

don't succeed at first. One suggestion I can give you is to try to discover why the 

formula is true before you attempt to give a general proof. So, for example, first 

look at numbers like 21 = 3 · 7 and 65 = 5 · 13 that are products of two primes and 

list their divisors. This should enable you to prove that a(pq) = a(p )a( q) when p 
and q are distinct prime numbers. Then try some m's and n's that have two or three 

divisors each and try to see how the divisors of m and n fit together to give divisors 

of mn. If you can describe this precisely enough, you should be able to prove that 

a(mn) = a(m)a(n) . Remember, though, that you'll need to use the fact that m 

and n are relatively prime. 

How is the sigma function related to perfect numbers? A number n is perfect if 

the sum of its divisors, other than n itself, is equal to n. The sigma function a( n) 
is the sum of the divisors of n, including n, so it has an "extra" n. Therefore, 

n is perfect exactly when a( n) = 2n. 

We are now ready to prove Euler's formula for even perfect numbers, which we 

restate here for your convenience. 

1 Your mission, should you decide to accept it, is to prove the multiplication formula for the sigma 

function. Should you be captured or killed in this endeavor, we will be forced to deny all knowledge 

of your activities. Good luck! 
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Theorem 15.4 (Euler's Perfect Number Theorem). If n is an even perfect number, 
then n looks like 

n = 2P-1(2P - 1), 

where 2P - 1 is a Mersenne prime. 

Proof Suppose that n is an even perfect number. The fact that n is even means 

that we can factor it as 

with k > 1 and m odd. 

Next we use the sigma function formulas to compute a ( n), 

a(n) = a(2km) 

= a(2k)a( m) 

= (2k+l - l)a(m) 

using the multiplication formula for a 
and the fact that gcd(2k, m) = 1, 

using the formula for a(pk) with p = 2. 

But n is supposed to be perfect, which means that a(n) = 2n = 2k+1m. So we 

have two different expressions for a(n), and they must be equal, 

2k+lm = (2k+l - l)a(m). 

The number 2k+l - 1 is clearly odd, and (2k+l - l)a(m) is a multiple of 

2k+ 1, so 2k+ 1 must divide a ( m). In other words, there is some number c such that 

a(m) = 2k+1c. We can substitute this into the above equation to get 

2k+lm = (2k+l - l)a(m) = (2k+l - l)2k+1c, 

and then canceling 2k+l from both sides gives m = (2k+l - l)c. To recapitulate, 

we have shown that there is an integer c such that 

m = (2k+l - l)c and 

We are going to show that c = 1 by assuming that c > 1 and deriving a false 

statement. (This is called a "proof by contradiction.") So suppose that c > 1. Then 

m = ( 2k+ 1 - 1) c would be divisible by the distinct numbers 

1, c, and m. 

(N.B. The fact that our original number n was even means that k > 1, soc and m 

are different.) Of course, mis probably divisible by many other numbers, but in 

any case we find that 

a(m) > 1 + c + m = 1 + c + (2k+l - l)c = 1 + 2k+1c. 
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However, we also know that a ( m) = 2k+ 1 c, so 

2k+lc > 1 + 2k+1c. 
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Therefore, 0 > 1, which is an absurdity. This contradiction shows that c must 

actually be equal to 1, which means that 

m = (2k+l -1) and a(m) =2k+l =m+l. 

Which numbers m have the property that a(m) = m + 1? These are clearly 

the numbers whose only divisors are 1 and m, since otherwise the sum of their 

divisors would be larger. In other words, a(m) = m + 1 exactly when mis prime. 

We have now proved that if n is an even perfect number then 

with 2k+ 1 -1 a prime number. 

We know from Chapter 14 that if 2k+l -1 is prime then k + 1 must itself be prime, 

say k + 1 = p. So every even perfect number looks liken = 2P-1(2P - 1) with 

2P - 1 a Mersenne prime. This completes our proof of Euler's Perfect Number 

Theorem. D 

Euler's Perfect Number Theorem gives an excellent description of all even per

fect numbers, but it says nothing about odd perfect numbers. 

Question 15.5 (Odd Perfect Number Quandary). Are there any odd perfect num

bers? 

To this day, no one has been able to discover any odd perfect numbers, although 

this is not through lack of trying. Many mathematicians have written many research 

papers (more than 50 papers in the last 50 years) studying these elusive creatures, 

and it is currently known that there are no odd perfect numbers less than 10300• 
However, no one has yet been able to prove conclusively that none exist, so for 

now, odd perfect numbers are like the little man in the poem: 

Last night I met upon the stair, 

A little man who wasn't there. 

He wasn't there again today. 

I wish to heck he'd go away. 

Anonymous 

If you do some experimentation with small numbers, you might suspect that 

a (n) < 2n for all odd numbers. If this were true, it would certainly prove that 

there are no odd perfect numbers, but unfortunately it is not true. The first odd 
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number for which it is false is n = 945 = 33 · 5 · 7, which has a(945) = 1920. 
This example should serve as a warning against believing a fact to be true simply 
because it has been checked for lots of small numbers. It is perfectly all right to 
make conjectures based on numerical data, but mathematicians insist on rigorous 
proofs precisely because such data can be misleading. 

Exercises 

15.1. If m and n are integers with gcd(m, n) = 1, prove that O'(mn) = O'(m)O'(n). 

15.2. Compute the following values of the sigma function. 

(a) 0' ( 10) (b) 0' (20) (c) 0' ( 1728) 

15.3. (a) Show that a power of 3 can never be a perfect number. 

(b) More generally, if pis an odd prime, show that a power pk can never be a perfect 

number. 

(c) Show that a number of the form 3i · 5i can never be a perfect number. 

(d) More generally, if pis an odd prime number greater than 3, show that the product 

3ipi can never be a perfect number. 

(e) Even more generally, show that if p and q are distinct odd primes, then a number of 

the form qipi can never be a perfect number. 

15.4. Show that a number of the form 3m · 5n · 7k can never be a perfect number. 

15.5. Prove that a square number can never be a perfect number. [Hint. Compute the value 

of O'( n2) for the first few values of n. Are the values odd or even?] 

15.6. A perfect number is equal to the sum of its divisors (other than itself). If we look at 

the product instead of the sum, we could say that a number is product perfect if the product 

of all its divisors (other than itself) is equal to the original number. For example, 

m 
6 
9 

12 
15 

Product of factors 

1·2·3=6 
1·3 = 3 

1 . 2 . 3 . 4 . 6 = 144 
1. 3. 5 = 15 

product perfect 

product is too small 
product is too large 

product perfect. 

So 6 and 15 are product perfect, while 9 and 12 are not product perfect. 

(a) List all product perfect numbers between 2 and 50. 

(b) Describe all product perfect numbers. Your description should be precise enough to 

enable you easily to solve problems such as "Is 35710 product perfect?" and "Find a 

product perfect number larger than 10000." 

(c) Prove that your description in (b) is correct. 

15.7. l.l (a) Write a program to compute O'(n), the sum of all the divisors of n (in

cluding 1 and n itself). You should compute O'(n) by using a factorization of n into 

primes, not by actually finding all the divisors of n and adding them up. 
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(b) As you know, the Greeks called n perfect if a ( n) = 2n. They also called n abundant 
if a ( n) > 2n, and they called n deficient if a ( n) < 2n. Count how many n's

between 2 and 100 are perfect, abundant, and deficient. Clearly, perfect numbers are

very rare. Which do you think are more common, abundant numbers or deficient 

numbers? Extend your list for 100 < n ::; 200 and see if your guess still holds.

15.8. The Greeks called two numbers m and n an amicable pair if the sum of the proper

divisors of m equals n and simultaneously the sum of the proper divisors of n equals m. 

(The proper divisors of a number n are all divisors of n excluding n itself.) The first 

amicable pair, and the only one (as far as we know) that was known in ancient Greece, is 

the pair (220, 284). This pair is amicable since

284 = 1 + 2 + 4 + 5 + 10 + 11 + 20 + 22 + 44 + 55 + 110 

220 = 1 + 2 + 4 + 71 + 142 

(divisors of 220) 

(divisors of 284). 

(a) Show that m and n form an amicable pair if and only if a (n) and a (m) both equal

n + m. 

(b) Verify that each of the following pairs is an amicable pair of numbers. 

(220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232, 6368), 

(10744, 10856), (12285, 14595). 

(c) There is a rule for generating amicable numbers, although it does not generate all of 

them. This rule was first discovered by Abu-I-Hasan Thabit ben Korrah around the 

ninth century and later rediscovered by many others, including Fermat and Descartes. 

The rule says to look at the three numbers 

p = 3 · 2e-l - 1, 
q = 2p + 1 = 3 · 2e - 1, 

r = (p + l)(q + 1) - 1 = 9 · 22e-l - 1. 

If all of p, q, and r happen to be odd primes, then m = 2epq and n = 2er are

amicable. Prove that the method of Thabit ben Korrah gives amicable pairs. 

(d) Taking e = 2 in Thabit ben Korrah's method gives the pair (220, 284). Use his

method to find a second pair. If you have access to a computer that will do factor

izations for you, try to use Thabit ben Karrah's method to find additional amicable 

pairs. 

15.9. Il Let

s (n) = a (n) -n =sum of proper divisors ofn;

that is, s ( n) is equal to the sum of all divisors of n other than n itself. So n is perfect if 

s (n) = n, and (m, n) are an amicable pair if s(m) = n and s (n) = m. More generally, a

collection of numbers ni, n2, ... , nt is called sociable (of order t) if

... ' 
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(An older name for a list of this sort is an Aliquot cycle.) For example, the numbers 

14316, 19116, 31704, 47616, 83328, 177792, 295488, 

629072, 589786, 294896, 358336, 418904, 366556, 274924, 

275444, 243760, 376736, 381028, 285778, 152990, 122410, 

97946, 48976, 45946, 22976, 22744, 19916, 17716 

are a sociable collection of numbers of order 28. 
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(a) There is one other collection of sociable numbers that contains a number smaller than 

16000. It has order 5. Find these five numbers. 

(b) Up until 1970, the only known collections of sociable numbers of order at least 3 

were these two examples of order 5 and 28. The next such collection has order 4, and 

its smallest member is larger than 1,000,000. Find it. 

(c) Find a sociable collection of order 9 whose smallest member is larger than 

800,000,000. 

This is the only known example of order 9. 

(d) Find a sociable collection of order 6 whose smallest member is larger than 

90,000,000,000. 

There are two known examples of order 6; this is the smallest. 



Chapter 16 

Powers Modulo m and 
Successive Squaring 

How would you compute 

5100000000000000 (mod 12830603)?

If 12830603 were prime, you might try using Fermat's Little Theorem (Chapter 9),

and even if it is not prime, Euler's Formula (Chapter 10) is available. In fact, it

turns out that 12830603 = 3571 · 3593 and

¢(12830603) = ¢(3571)¢(3593) = 3570 . 3592 = 12823440.
Euler's Formula tells us that 

a<P(m) 1 (mod m ) for any a and m with gcd(a, m) = 1,

so we can use the fact that 

100000000000000=7798219 .12823440+6546640

to "simplify" our problem, 

5100000000000000 = (512823440 )7798219. 56546640

56546640 (mod 12830603).
Now we "only" have to compute the 65466401h power of 5 and then reduce it

modulo 12830603. Unfortunately, the number 56546640 has more than 4 million

digits, so it would be difficult to calculate even with a computer. And later we will 

want to compute ak (mod m) for numbers a, k, and m having hundreds of digits,
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in which case the number of digits in ak is larger than the number of subatomic 

particles in the known universe! We need to find a better method. 

You may well be asking why anyone would want to compute such large powers. 

Aside from the intrinsic interest (if any) of being able to perform computations with 

large numbers, 1 there is a very practical reason. As we will see later, it is possible to 

use the computation of ak (mod m) to encode and decode messages. Amazingly 

enough, the resulting codes are so good that they are unbreakable by even the most 

sophisticated code-breaking techniques currently known. Having thus piqued your 

curiosity, we will spend the remainder of this chapter and the next discussing how 

to compute large powers and large roots modulo m. Then in Chapter 18 we will 

explain how to use such computations to create "unbreakable" codes. 

The clever idea used to compute ak (mod m) is called the Method of Succes

sive Squaring. Before describing the method in general, we illustrate it by comput-

mg 

7327 (mod 853). 

The first step is to create a table giving the values of 7, 72, 74, 78, 716, ... mod

ulo 853. Notice that to get each successive entry in the list, we merely need to 

square the previous number. Furthermore, since we always reduce modulo 853 

before squaring, we never have to work with any numbers larger than 8522. Here's 

the table of 2k-powers of 7 modulo 853. 

71 - 7 - 7 (mod 853) 
72 

_ (71 ) 2 
_ 72 

_ 49 _ 49 (mod 853) 
74 _ (72) 2 

_ 492 
_ 2401 _ 695 (mod 853) 

78 
_ (74) 2 = 6952 

_ 483025 _ 227 (mod 853) 
716 

_ 

(78) 2 
_ 2272 

_ 51529 _ 349 (mod 853) 

732 
_ (716) 2 

_ 3492 
_ 121801 _ 675 (mod 853) 

764 - (732) 2 - 6752 - 455625 = 123 (mod 853) 
7128 = (764) 2 = 1232 = 15129 = 628 (mod 853) 
7256 - (7128) 2 - 6282 - 394384 - 298 (mod 853) 

The next step is to write the exponent 327 as a sum of powers of 2. This is called 

the binary expansion of 327. The largest power of 2 less than 327 is 28 
= 256, so 

we write 327 = 256 + 71. Then the largest power of 2 less than 71 is 26 
= 64, so 

1 Question from a fourth grader: "What do mathematicians do, anyway, multiply really big num
bers?" 
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327 = 256 + 64 + 7. And so on: 

327 = 256 + 71 

= 256 + 64 + 7 

= 256 + 64 + 4 + 3 

= 256 + 64 + 4 + 2 + 1. 

Now we use the binary expansion of 327 to compute 

7327 
= 7256+64+4+2+1 

= 7256 . 764 . 74 . 72 . 7 l 

= 298 · 123 · 695 · 49 · 7 (mod 853). 

113 

The numbers in the last line are taken from the table of powers of 7 that we com

puted earlier. 

To complete the computation of 7327 (mod 853), we just need to multiply the 

five numbers 298 · 123 · 695 · 49 · 7 and reduce them modulo 853. And if the prod

uct of all five numbers is too large for our taste, we can just multiply the first two, 

reduce modulo 853, multiply by the third, reduce modulo 853, and so on. In this 

way, we still never need to work with any number larger than 8522. Thus, 

We're done! 

298 . 123 . 695 . 49 . 7 = 828 . 695 . 49 . 7 = 538 . 49 . 7 

= 772 · 7 = 286 (mod 853). 

7327 
= 286 (mod 853). 

This may seem like a lot of work, but suppose that instead we try to compute 

7327 (mod 853) directly by first computing 7327 and then dividing by 853 and 

taking the remainder. It is possible to do this with a small computer, since 

7327 
= 22236123868955180582 ........... 32584937995509879543 

237 digits omitted 

= 286 (mod 853), 

but, as you can see, the numbers get quite large. And it is completely infeasible to 

compute ak exactly when k has, say, 20 digits, much less when k has the hundreds 

of digits required for the construction of secure codes. 

On the other hand, the method of successive squaring can be used to compute 

ak (mod m) even when k has hundreds or thousands of digits, because a careful 

analysis of the method shows that it takes approximately log2 ( k) steps to compute 
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ak (mod m) . We will not perform this analysis here but will observe that log2 (k) 
is more-or-less 3.322 times the number of digits ink. So if k has, say, 1000 digits, 

then it takes approximately 3322 steps to compute a k (mod m) . Admittedly, this is 

a lot of steps to do by hand, but it is the work of an instant on even a small desktop 

computer. To give you an idea of the times involved, my laptop computer (with a 

1500-MHz Pentium chip, for those who are technically inclined) used successive 

squaring to compute 

710200'000 
= 

7
8

7 (mod 853) in 0.36 seconds and 

7102'000'000 
_ 3 03 (mod 853) in 4.48 seconds. 

We now describe the general method of computing powers by successive squar

mg. 

Algorithm 16.1 (Successive Squaring to Compute ak (mod m) ). The following 
steps compute the value of ak (mod m) : 

1. Write k as a sum of powers of2 , 

k = uo + u1 · 2 + u2 · 4 + U3 · 8 + · · · + Ur · 2
r

, 

where each Ui is either 0 or 1. (This is called the binary expansion of k.) 

2. Make a table of powers of a modulo m using successive squaring. 

al 
a2 (a1

)2 

a4 _ (a2 )2 

a8 = (a4 )2 

= A2 - 0 

= A2 - 1 

-
A2 = 2 

-
A

o (mod m) 
A

i (mod m) 
- A2 (mod m) 
= 

A
3 (mod m) 

. . . . 

a2r - ( a2r-l ) 2 -
A

;_1 - �r (mod m) 

Note that to compute each line of the table you only need to take the number 
at the end of the previous line, square it, and then reduce it modulo m. Also 
note that the table has r + 1 lines, where r is the highest exponent of 2 

appearing in the binary expansion of k in Step 1. 

3. The product 
A

�0 • 
A

¥1 · 
A

�2 
• • • 

A�r (mod m) 

will be congruent to ak (mod m ). Note that all the Ui 's are either 0 or 1 ,  so 
this number is really the product of those Ai 's for which ui equals 1.  
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Proof Why does it work? We compute 

using Step 1, 
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= auo. (a2)u1 
• (a4)u2 • • •  (a2r)ur 

A�0 • A¥1 
· A�2 

• • • A�r (mod m) using the table from Step 2. D 

As mentioned earlier, computing large powers ak (mod m) has a real-world 

use in creating secure codes. To create these codes, it is necessary to find a few 

large primes, say primes with between 100 and 200 digits. This brings up the 

question of how to check whether or not a given number m is prime. A surefire 

but inefficient method is to try dividing by each number up to ylrii, and see if you 

find any factors. If not, then m is prime. Unfortunately, this method is not practical 

even for m's of moderate size. 

Using successive squaring and Fermat's Little Theorem (Chapter 9), we can 

often show that a number m is composite without finding any factors at all! Here's 

how. Take any number a less than m. First compute gcd(a, m) . If it is greater 

than 1, then you've found a factor of m, so m is composite and you're done. On 

the other hand, if gcd(a, m) = 1, use successive squaring to compute 

am-l (mod m) . 

Fermat's Little Theorem says that if m is prime then the answer will be 1; so if 

the answer turns out to be anything other than 1, you know that m is composite 

without actually knowing any factors. 

Here's an example. Using successive squaring we compute 

2283976710803262 280196559097287 (mod 283976710803263), 

so we know that 283976710803263 is definitely not a prime. In fact, its prime 

factorization is 

283976710803263 = 104623 . 90437 . 30013. 

Now consider m = 630249099481. Using successive squaring, we find that 

2630249099480 1 (mod 630249099481) 
and 

3630249099480 = 1 (mod 630249099481) . 
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Does this mean that 630249099481 is prime? Not necessarily, but it certainly 
makes it likely. And if we check am-I (mod m) for a = 5, 7, and 11 and 
again get 1 (which we do), then we would become even more convinced that 
630249099481 is prime. Using Fermat's Little Theorem in this way, it is never 
possible to prove conclusively that a number is prime; but if am-I = 1 (mod m) 
for a lot of a's, then we would certainly suspect that m is indeed a prime. This is 
how Fermat's Little Theorem and successive squaring can be used to prove that 
certain numbers are composite and to strongly suggest that certain other num
bers are prime. Unfortunately, there do exist composite numbers m such that 
am-I 1 (mod m) for all a's with gcd(a, m) = 1. Such m's are called Car

michael numbers. The smallest Carmichael number is 561, as you verified in Ex
ercise 10.3. We investigate Carmichael numbers and primality testing further in 
Chapter 19. 

Exercises 

16.1. Use the method of successive squaring to compute each of the following powers. 

(a) 513 (mod 23) (b) 28749 (mod 1147)

16.2. JJ. The method of successive squaring described in the text allows you to compute

ak (mod m) quite efficiently, but it does involve creating a table of powers of a mod

ulo m. 
(a) Show that the following algorithm will also compute the value of ak (mod m). It is 

a more efficient way to do successive squaring, well-suited for implementation on a 

computer. 

(1) Set b = 1 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

Loop while k 2: 1 
If k is odd, set b=a·b(modm) 
Set a= a2 (mod m). 
Set k = k/2 (round down if k is odd)

End of Loop 

Return the value of b (which equals ak (mod m)) 
(b) Implement the above algorithm on a computer using the computer language of your

choice. 

(c) Use your program to compute the following quantities:

(i) 21000 (mod 2379) (ii) 5671234 (mod 4321) (iii) 47258008 (mod 1315171)

16.3. (a) Compute 77386 (mod 7387) by the method of successive squaring. Is 7387
prime? 

(b) Compute 77392 (mod 7393) by the method of successive squaring. Is 7393 prime?
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16.4. 

� 

Write a program to check if a number n is composite or probably prime as

follows. Choose 10 random numbers a1, a2, ... , a10 between 2 and n - 1 and com

pute ar-1 mod n for each ai. If ar -1 ¢ 1 (mod n) for any ai, return the message "n 

is cornpos i te." If ar -1 - 1 (mod n) for all the ai
'

s, return the message "n is
probably prime." 

Incorporate this program into your factorization program (Exercise 7.7) as a way to 

check when a large number is prime. 

16.5. Compute 29990 (mod 9991) by successive squaring and use your answer to say

whether you believe that 9991 is prime.



Chapter 17 

Computing kth Roots 
Modulo m

In the last chapter we learned how to compute kth powers modulo m when k and m
are very large. Now we will travel in the opposite direction and try to compute kth

roots modulo m. In other words, suppose we are given a number band told to find 
a solution to the congruence 

xk _ b (mod m). 

We could try substituting x = 0, 1, 2, ... until we find a solution, but if m is large, 
this could take a long time. It turns out that if we know the value of </>( m) then we 
can compute the k1h root of b modulo m fairly easily. As usual, we first illustrate
the method with an example. 

We are going to solve the congruence 

x131 758 (mod 1073). 

The first step is to compute ¢(1073). We can do this using the formulas for¢ in 
Chapter 11 as soon as we factor 1073 into a product of primes. This is easily done; 

1073 = 29 . 37, so ¢(1073) = ¢(29)¢(37) = 28 . 36 = 1008. 
The next step is to find a solution in (positive) integers to the equation 

ku - ¢(m)v = 1; that is, to the equation 131u - 1008v = 1. 

We know that a solution exists, since for our example 

gcd(k, ¢(m)) = gcd(131, 1008) = 1, 
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and the method described in Chapter 6 allows us to find the solution u = 731 and 

v = 95. More precisely, the method in Chapter 6 gives the solution 

131 . (-277) + 1008 . 36 = 1. 

To get positive values for u and v, we modify this solution, 

u = -277 + 1008 = 731 and v = -36 + 131 = 95. 

The equation 

131 . 731 - 1008 . 95 = 1 

provides the key to solving the original problem. 

We take x131 and raise it to the uth power, that is, to the 731 st power. Notice 

that 

(x131) 731 
= xl31·731 = xl+l008·95 

= x. (x10os)95. 

But 1008 = ¢(1073), and Euler's formula (Chapter 10) tells us that 

x1008 1 (mod 1073). 

This means that (x131) 731 - x (mod 1073). So if we raise both sides of the 

congruence x131 = 758 (mod 1073) to the 731 st power, we get 

x (x131)731 = 758731(mod 1073). 

Now we need merely use the method of successive squares (Chapter 16) to compute 

the number 758731 (mod 1073). The answer we arrive at is x 905 (mod 1073). 
Finally, as a check, we can use successive squaring to verify that 905 131 is indeed 

congruent to 758 modulo 1073. 
Here, then, is the general method of computing roots modulo m. 

Algorithm 17 .1 (How to Compute kth Roots Modulo m ). Let b, k, and m be given 

integers that satisfy 

gcd(b, m) = 1 and gcd(k, ¢(m)) = 1. 

The following steps give a solution to the congruence 

xk - b (mod m). 

1. Compute ¢(m). (See Chapter 11.) 

2. Find positive integers u and v that satisfy ku - ¢( m ) v = 1. [See Chap

ter 6. Another way to say this is that u is a positive integer satisfying 

ku = 1 (mod ¢(m)), sou is actually the inverse of k modulo ¢(m).] 
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3. Compute bu (mod m) by successive squaring. (See Chapter 16.) The value 
obtained gives the solution x. 

Why Does It Work? We need to check that x = bu is a solution to the congruence 

xk = b (mod m). 

xk = (bu)k 
= buk 
= bl+¢(m)v 
= b. (b¢(m))v 

= b (mod m) 

substituting x = bu into xk, 

since ku - ¢( m )v = 1 from Step 2, 

since b¢(m) = 1 (mod m) from Euler's 

formula (Chapter 10). 

This completes the proof that x = bu provides the desired solution to the congru

ence xk = b (mod m). D 

The successive squaring method described in Chapter 16 is a completely prac

tical way to compute powers ak (mod m), even for very large numbers k and m. 
Is our method for finding kth roots modulo m equally practical? In other words, 

how difficult is it, in practice, to solve xk = b (mod m)? We'll consider the three 

steps in reverse order. Step 3 says to compute bu (mod m) by successive squaring, 

so it causes no problem. Step 2 asks us to solve ku - ¢(m)v = 1. The method 

described in Chapter 6 for solving such equations is also quite practical, even for 

large values of k and ¢(m), since it is based on the Euclidean algorithm. 

Finally, we come to the innocuous-looking Step 1, which says to find the value 

of ¢( m). If we know the factorization of m into primes, then it is easy to com

pute ¢( m) using the formulas in Chapter 11. However, if m is very large, it may 

be extremely difficult, if not impossible, to factor m in any reasonable amount of 

time. For example, suppose that you are asked to solve the congruence 

x3968039 _ 34781 (mod 27040397). 

If you didn't have a computer, it might take you quite a while to discover that 

27040397 factors as a product of two primes, 27040397 = 4409 · 6133, so 

¢(27040397) = 4408 . 6132 = 27029856. 

Having computed ¢(m), we can do Step 2, 

3968039. 17881559 - 27029856. 2625050 = 1, 

and then Step 3, 

x = 3478117881559 = 22929826 (mod 27040397), 
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to find the solution. 
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Now imagine that rather than choosing an m with only 8 digits, I had instead 
taken two primes p and q, each of which has 100 digits, and set m = pq. Then it 
would be virtually impossible for you to solve xk = b (mod m) unless I were to 
tell you the values of p and q, since if you don't know the values of p and q, then 
you won't be able to find the value of ¢(m). 

In summary, this chapter contains an efficient and practical method to solve 

xk - b (mod m) 

provided that we are able to calculate ¢( m). It may seem unfortunate that the 
method does not work if we cannot calculate ¢(  m), but it is exactly this "weakness" 
that is exploited in the next chapter to construct extremely secure codes. 

Exercises 

17.1. Solve the congruence x329 _ 452 (mod 1147). [Hint. 1147 is not prime.]

17.2. (a) Solve the congruence x113 _ 347 (mod 463). 
(b) Solve the congruence x275 139 (mod 588). 

17 .3. In this chapter we described how to compute a k1h root of b modulo m, but you

may well have asked yourself if b can have more than one kth root. Indeed it can! For

example, if a is a square root of b modulo m, then clearly -a is also a square root of b 
modulo m. 

(a) Let b, k, and m be integers that satisfy

gcd(b, m) = 1 and gcd(k, ¢(m)) = 1. 

Show that b has exactly one kth root modulo m. 
(b) Suppose instead that gcd ( k, ¢( m)) > 1. Show that either b has no kth roots mod

ulo m, or else it has at least two kth roots modulo m. (This is a hard problem with

the material that we have done up to this point.) 

(c) If m =pis prime, look at some examples and try to find a formula for the number of

k1h roots of b modulo p (assuming that it has at least one).

17.4. Our method for solving xk b (mod m) is first to find integers u and v satisfying

ku - ¢(m)v = 1, and then the solution is x - bu (mod m). However, we only showed

that this works provided that gcd(b, m) = 1, since we used Euler's formula b¢(m) _ 

1 (mod m). 
(a) If mis a product of distinct primes, show that x bu (mod m) is always a solution

to xk b (mod m ) , even if gcd(b, m) > 1. 
(b) Show that our method does not work for the congruence x5 _ 6 (mod 9). 
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17.5. (a) Try to use the methods in this chapter to compute the square root of 23 mod

ulo 1279. (The number 1279 is prime.) What goes wrong? 

(b) More generally, if p is an odd prime, explain why the methods in this chapter cannot 

be used to find square roots modulo p. We will investigate the problem of square 

roots modulo p in later chapters. 

(c) Even more generally, explain why our method for computing k1h roots modulo m 

does not work if gcd ( k, ¢( m)) > 1.

17 .6. 

P-

Write a program to solve xk _ b (mod m) . Give the user the option of provid

ing a factorization of m to be used for computing ¢( m) . 



Chapter 18 

Powers, Roots, 

and ''Unbreakable'' Codes 

In the last two chapters we learned how to compute powers and roots of extremely 

large numbers modulo m. Briefly, we know how to compute ak (mod m) for any 

values of a, k, and m, and we know how to solve xk b (mod m) provided that 

we can calculate </>(m). Here's the basic idea that we use to encode and decode 

messages.1

T he first step in encoding a message is to convert it into a string of numbers. 

We use the simplest possible method to do this. We set A = 11, B = 12, ... , 

Z = 36. Here's a convenient table to use:

A B c D E F G H I J K 

11 12 13 14 15 16 17 18 19 20 21 

N 0 p Q R s T u v w x 

24 25 26 27 28 29 30 31 32 33 34 

For example, the message "To be or not to be" becomes 

T 0 

30 25 

B 

12 

E 0 R N 0 

15 25 28 24 25 

T T 0 

30 30 25 

L 

22 

y 

35

B 

12 

M 

23 

z 

36 

E 

15 

1Technically, what we describe in this chapter is a cipher, not a code, so we are really enciphering
and deciphering messages. Historically, the word code was reserved for methods in which entire 
words and phrases are replaced by a single symbol or number, while ciphers use individual letters as 
their basic units. More recently, the word code has acquired other mathematical meanings in different 
contexts. For ease of exposition, we use the terms code and cipher interchangeably. 
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So our message is the string of digits 30251215252824253030251215. Of course, 

in some sense the message is now encoded, since this string of digits serves to 

conceal the message. But even an amateur cryptographer would be able to break 

this simple code in just a few minutes. 2 
Now we are ready to explain the crux of the encoding and decoding process. 

The first thing that we do is choose two (large) prime numbers p and q. Next we 

multiply them together to get a modulus m = pq. We can also compute ¢(m) = 

¢ (p) ¢ ( q) = (p - 1) ( q - 1), and we choose a number k that is relative I y prime to 

¢(m). Now we publish the numbers m and k for the whole world to know, but we 

keep the values of p and q secret. Anyone who wants to send us a message uses the 

values of m and k to encode the material in the following manner. 

First, they convert their message into a string of digits as described above. 

Next, they look at the number m and break their string of digits into numbers 

that are less than m. For example, if m is a number in the millions, they would 

write their message as a list of six-digit numbers. So now their message is a list 

of numbers ai, a2, ... , ar. The next step is to use successive squaring to com

pute a� (mod m), a� (mod m), ... , a� (mod m). These values form a new list 

of numbers bi, b2, ... , br. This list is the encoded message. In other words, the 

message that is sent to us is the list of numbers bi, b2, ... , br. 
How do we decode the message when we receive it? We have been sent the 

numbers bi, b2, ... , br, and we need to recover the numbers ai, a2, ... , ar. Each 

bi is congruent to af (mod m), so to find ai we need to solve the congruence 

xk bi (mod m). This is exactly the problem we solved in the last chapter, 

assuming we were able to calculate ¢(m). But we know the values of p and q 
with m = pq, so we easily compute 

¢( m) = ¢(p) ¢( q) = (p - 1) ( q - 1) = pq - p - q + 1 = m - p - q + 1. 

Now we just need to apply the method used in Chapter 17 to solve each of the 

congruences xk = bi (mod m). The solutions are the numbers a i, a2, ... , ar, and 

then it is easy to take this string of digits and recover the original message. 

We illustrate the encoding and decoding procedure with the primes p = 12553 
and q = 13007. We multiply them together to get the modulus m = pq = 

163276871, and we also record for future use 

¢(m) = (p - l)(q - 1) = 163251312. 

2We could have assigned a number, such as 99, to represent a space, and we could even have 
assigned numbers to represent various punctuation marks. But, to keep things simple, we ignore 
such niceties and just write our messages with all the letters squashed together. 
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We also need to choose a k that is relatively prime to ¢(m), so we take k = 79921. 

In summary, we have chosen 

p = 12553, q = 13007, m = pq = 163276871, and k = 79921. 

Now suppose we want to send the message "To be or not to be." As described 

earlier, this message becomes the string of digits 

30251215252824253030251215. 

The number m is 9 digits long, so we break the message up into 8-digit numbers: 

30251215, 25282425, 30302512, 15. 

Next we use the method of successive squares to raise each of these numbers to the 

kth power modulo m. 

3025121579921 
_ 149419241 (mod 163276871) 

2528242579921 
_ 62721998 (mod 163276871) 

3030251279921 
_ 118084566 (mod 163276871) 

1579921 40481382 (mod 163276871) 

The encoded message is the list of numbers 

149419241, 62721998, 118084566, 40481382. 

Now let's try decoding a new message. It's after midnight, there's a knock at 

your door, and a mysterious messenger delivers the following cryptic missive: 

145387828, 47164891, 152020614, 27279275, 35356191. 

Without a moment of hesitation, you whip out your handy-dandy number theory 

decoding book and start to work. One number at a time, you use the methods from 

Chapter 17 to solve the congruences 

x79921 
_ 145387828 (mod 163276871) 

x79921 47164891 (mod 163276871) 
x79921 152020614 (mod 163276871) 
x79921 

_ 27279275 (mod 163276871) 
x79921 35356191 (mod 163276871) 

This gives you the string of digits 

===} 

===} 

===} 

===} 

===} 

x - 30182523 

x 26292524 

x 19291924 

x = 30282531 

x- 122215 

30182523262925241929192430282531122215, 
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and now you use the number-to-letter substitution table for the final decoding step. 

30 18 25 23 26 29 25 24 19 29 19 24 30 28 25 31 12 22 15 
THOMPSON IS I NTROUBL E 

Supplying the obvious word breaks and punctuation, you read 

"Thompson is in trouble" 

and off you go to the rescue. 
Is this encoding scheme secure? Suppose that you intercept a message that you 

know has been encoded with the modulus m and the exponent k. How difficult 
would it be for you to break the code and read the message? At present, the only 
way to decode is to find the value of¢( m) and then use the decoding process just 
described. If m is the product of two primes p and q, then 

¢( m) = (p - 1) ( q - 1) = pq - p - q + 1 = m - p - q + 1. 

Since you already know the value of m, you just need to find the value of p + q. 
But if you can find p + q, then you can also determine p and q, since they are the 

roots of the quadratic equation 

X2 - (p + q)X + m = 0. 

So in order to decode the intercepted message, you essentially need to find the 
factors p and q of m. 

If m is not too large, say 5 or 10 digits, then a computer will find the factors 
almost immediately. Using more advanced methods from number theory, mathe
maticians have devised techniques that will factor much larger numbers, say those 
with 50 to 100 digits. So if you take primes p and q with less than 50 digits each, 
your code will not be secure. However, if you take primes with, say, 100 dig

its each, then no one at present will be able to decode your messages unless you 
reveal to them your values of p and q. Of course, it is possible that future mathe
matical advances will enable people to factor 200-digit numbers; but then you need 
merely take primes p and q with 200 digits each, and your 400-digit modulus m 
will again render your messages secure. The idea underlying the encoding scheme 
is thus a very simple one: It is easy to multiply large numbers together, but it is 
difficult to factor a large number. 

The cryptographic method described in this chapter is called a public key cryp

tosystem. This name reflects the fact that the encoding key consisting of the mod
ulus m and the exponent k can be distributed to the public while the decoding 
method remains secure. This idea, that it might be possible to have a code where 
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knowledge of the encoding process does not enable one to decode messages, was 

propounded by Whitfield Diffie and Martin Hellman in 1976. Diffie and Hellman 

gave a theoretical description of how such a public key cryptosystem might work, 

and the following year Ron Rivest, Adi Shamir, and Leonard Adleman described 

a practical public key cryptosystem. Their idea, which we have described in this 

chapter, is called the RSA public key cryptosystem in honor of its three inventors. 

Exercises 

18.1. Decode the following message, which was sent using the modulus m = 7081 and 

the exponent k = 1789. (Note that you will first need to factor m.) 

5192, 2604, 4222 

18.2. It may appear that RSA decryption does not work if you are unlucky enough to 

choose a message a that is not relatively prime to m. Of course, if m = pq and p and q are

large, this is very unlikely to occur. 

(a) Show that in fact RSA decryption does work for all messages a, regardless of whether

or not they have a factor in common with m. 
(b) More generally, show that RSA decryption works for all messages a as long as m is

a product of distinct primes. 

(c) Give an example with m = 18 and a = 3 where RSA decryption does not work.

[Remember, k must be chosen relatively prime to ¢(m) = 6.] 

18.3. Write a short report on one or more of the following topics. 

(a) The history of public key cryptography

(b) The RSA public key cryptosystem

(c) Public key digital signatures

(d) The political and social consequences of the availability of inexpensive unbreakable

codes and the government's response 

18.4. £, Here are two longer messages to decode if you like to use computers.

(a) You have been sent the following message:

5272281348, 21089283929, 
26945939925, 27395704341, 
13583590307, 5838404872, 

3117723025, 26844144908, 22890519533, 
2253724391, 1481682985, 2163791130, 

12165330281, 28372578777, 7536755222. 

It has been encoded using p = 187963, q = 163841, m = pq = 30796045883, and

k = 48611. Decode the message. 

(b) You intercept the following message, which you know has been encoded using the 

modulus m = 956331992007843552652604425031376690367 and exponent k = 
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12398737. Break the code and decipher the message. 

821566670681253393182493050080875560504, 

87074173129046399720949786958511391052, 

552100909946781566365272088688468880029, 

491078995197839451033115784866534122828, 

172219665767314444215921020847762293421. 
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(The material for this exercise is available on the Friendly Introduction to Number 

Theory home page listed in the Preface.) 

18.5. 

bi 

Write a program to implement the RSA cryptosystem. Make your program as

user friendly as possible. In particular, the person encoding a message should be able to 

type in their message as words, including spaces and punctuation; similarly, the decoder 

should see the message appear as words with spaces and punctuation. 

18.6. The problem of factoring large numbers has been much studied in recent years be

cause of its importance in cryptography. Find out about one of the following factorization 

methods and write a short description of how it works. (Information on these methods is 

available in number theory textbooks and on the web.) 

(a) Pollard's p method (that is the Greek letter rho) 

(b) Pollard's p - 1 method 

( c) The quadratic sieve factorization method 

(d) Lenstra's elliptic curve factorization method 

( e) The number field sieve 

(The last two methods require advanced ideas, so you will need to learn about elliptic 

curves or number fields before you can understand them.) The number field sieve is the 

most powerful factorization method currently known. It is capable of factoring numbers of 

more than 150 digits. 

18.7. 

� 

Write a computer program implementing one of the factorization methods that

you studied in the previous exercise, such as Pollard's p method, Pollard's p - 1 method, 

or the quadratic sieve. Use your program to factor the following numbers. 

(a) 47386483629775753 

(b) 1834729514979351371768185745442640443774091 



Chapter 19 

Primality Testing 
and Carmichael Numbers 

Prime numbers are the fundamental building blocks of the integers. Within the 

infinitude of prime numbers we see displayed some of the deepest and most beau

tiful patterns in all of number theory, and indeed in all of mathematics. And prime 

numbers, especially large prime numbers, have their practical side as well, as we 

saw when we constructed the RSA cryptosystem in Chapter 18. This leads us 

inexorably to the following question: 

How can we tell if a (large) number is prime? 

For small numbers n such as 

8629, 8633, and 8641, 

we can simply check all possible (prime) divisors up to fo, and either we find a 

divisor or we know when we're done that n is prime. Thus we find that 8629 and 

8641 are prime numbers, but 8633 factors as 89 · 97, so it is not prime.

For larger numbers such as 

rn = 113736947625310405231177973028344375862964001 

and 

n= 113736947625310405231177973028344375862953603 

it is too much work, even with a computer, to try all possible divisors up to the 

square root. However, we saw in Chapter 16 that it is not very difficult (on a 
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computer) to raise numbers to very high powers modulo very large numbers. For 

example it takes very little time for a computer to calculate 

2rn = 2113736947625310405231177973028344375862964001 

= 39241970815393499060120043692630615961790020 (mod 
m) . 

At first glance, this seems like a completely useless calculation to make, but in fact 

it has tremendous practical significance. 

To explain why, we recall Fermat's Little Theorem (Theorem 9.1), which says 

that if p is a prime number then 1 

aP =a (mod 
p) for every integer a. 

Thus the fact that 2rn is not congruent to 2 modulo m tells us that m is defi

nitely not a prime number. We can state this unequivocally: The incongruence 

2rn ¢. 2 (mod 
m) constitutes a proof that m is not prime. It is worth reflecting for 

a moment on the surprising strength of our conclusion. We have proved that m 

is not prime, even though we do not know how to factor m; and indeed our proof 

that mis composite provides no clues2 to aid us in finding a factor! The lesson to 

be learned is that it is often possible to establish that a number is composite without 

being able to factor it. 

Now consider the other number 

n= 113736947625310405231177973028344375862953603. 

If we perform a similar calculation, we find that 

2n = 211373694 7625310405231177973028344375862953603 _ 2 (mod 
n) . 

Can we use Fermat's Little Theorem to conclude that n is prime? The answer is 

absolutely not, Fermat's Little Theorem doesn't work in that direction. So we try a 

few more numbers, say up to a = 100, and we find that 

3n = 3 (mod 
n) , 4n = 4 (mod 

n) , 5n = 5 (mod 
n) , 

loon 100 (mod 
n) . 

1Theorem 9.1 actually says that ap-l 
_ 1 (mod p) provided p f a. We have multiplied this 

version of Fermat's Little Theorem by a in order to get a statement that is true for all values of a. 

This is a more convenient form to use in this chapter. 
2The number m is the product of the following two rather large prime numbers: 

40103836670582470495139653 and 2836061511010998317. 
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We still cannot use Fermat's Little Theorem to conclude that n is prime, but the 

fact that an 
_ a (mod n) for 99 different values of a certainly suggests that n is 

"probably" prime. 

This is a rather odd assertion; how can a number be "probably prime"? Either 

it is a prime or else it isn't a prime; it can't be prime on Tuesdays and Thursdays 

and composite the rest of the week. 3 

Suppose that we think of the number n as a natural phenomenon and we study n 

in the spirit of an experimental scientist. We perform experiments by choosing 

different values for the number a and computing the value of 

an (mod n) . 

If even a single experiment results in any number other than a, we conclude that n 
is definitely composite. So it is reasonable to believe that each time we perform an 

experiment and do obtain the value a we have gathered some "evidence" that n is 

pnme. 

We can put this reasoning on a firm footing by looking at those values of a 

whose nth power is different from a. We say that the number a is a witness for n if 

an t=- a (mod n) . 

This is an excellent name for a since, if the number n is trying to impersonate a 

prime, the prosecuting attorney can put a on the witness stand to prove that n is 

actually composite. 

If n is prime, then it obviously has no witnesses. The table on page 132, in 

which we have listed the witnesses for all numbers n up to 20, suggests that com

posite numbers tend to have quite a few witnesses. 

To further bolster this observation, we selected some random composite num

bers between 100 and 1000 and counted how many witnesses they have. We also 

give the percentage of the numbers between 1 and n that serve as witnesses. 

n 287 190 314 586 935 808 728 291 

# of witnesses 278 150 310 582 908 804 720 282 

% of witnesses 96.93 78.93 98.73 99.33 97.13 99.53 98.93 96.93 

3"When I use a number," Humpty Dumpty said in a rather scornful tone, "it means just what I 
choose it to mean-neither more nor less." 

"The question is," said Alice, "whether you can make numbers mean different things." 

"The question is," said Humpty Dumpty, "which is to be master-that's all." 

Or, as Hamlet was wont to say, "I am but mad north-north-west: when the wind is southerly I 
know a prime from a composite." 
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It seems that if n is composite, then most values of a serve as witnesses. For ex

ample, if n = 28 7, and if we choose a random value for a, then there is a 96. 93 

n Witnesses for n 

3 pnme 

4 2,3 

5 pnme 

6 2,5 

7 pnme 

8 2,3,4,5,6, 7 

9 2,3,4,5,6, 7 

10 2,3,4, 7,8,9 

11 pnme 

12 2,3,5,6,7,8,l0,11 

13 pnme 

14 2,3,4,5,6,9,10,11,12,13 

15 2,3, 7,8,12,13 

16 2,3,4,5,6,7,8,9,10,11,12,13,14,15 

17 pnme 

18 2,3,4,5,6, 7,8,11,12,13,l4,15,16,l7 

19 pnme 

20 2,3,4,6,7,8,9,lO,ll,12,13,l4,15,17,18,l9 

chance that a is a witness for the compositeness of n. Thus it will not take very 

many experiments to prove that n is composite. 

All our evidence and also common sense suggest that composite numbers have 

lots of witnesses. But is this really true? If we start to make a list of all numbers 

with their witnesses, we eventually run into the sad case of n = 561. This is a 

composite number, since 561 = 3 · 11 · 17, but unfortunately 561 doesn't have 

even a single witness! One way to verify that 561 has no witnesses is to compute 

an (mod n) for all 561 values of a. We take an easier approach. To prove that 

a561 _a (mod 561), 
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it is enough to prove that 

a561 a (mod 3) , a561 a (mod 11) , and a561 a (mod 17) , 
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since if a number is divisible by 3, by 11, and by 17, then it is divisible by their 

product 3 · 11 · 1 7. For the first congruence, we observe that if 3 divides a then 

both sides are 0, while if 3 does not divide a, we can use Fermat's Little Theorem 

a2 1 (mod 3) to compute 

a561 = a2·280+1 = (a2) 2so. a= 1. a= a (mod 3). 

The second and third congruences are checked in a similar fashion. Thus ei

ther 11 divides a and both sides are 0 modulo 11, or else we use the congruence 

a10 = 1 (mod 11) to compute 

a561 = al0·56+1 = (al0) 56. a 1. a a (mod 11). 

Finally, either 17 divides a and both sides are equal to 0 modulo 17, or else we use 

a16 = 1 (mod 17) to compute 

a561 = a16·35+1 = (al6) 35. a 1. a a (mod 17). 

Hence there are no witnesses for the composite number 561. 
This example and 14 others were first noted by R.D. Carmichael in 1910, so 

they are named in his honor. A Carmichael number is a composite number n with 

the property that 

an= a (mod n) for every integer 1 <a< n. 

In other words, a Carmichael number is a composite number that can masquerade 

as a prime, because there are no witnesses to its composite nature. We have seen 

that 561 is a Carmichael number, and in fact it is the smallest one. 

Here is the complete list of all Carmichael numbers up to 10000. 

561, 1105, 1729, 2465, 2821, 6601, 8911. 

Factoring them, 

561 = 3. 11 . 17 
1105 = 5. 13. 17 
1729 = 7. 13. 19 
2465 = 5 . 1 7 . 29 

2821 = 7. 13 . 31 
6601 = 7 . 23 . 41 
8911 = 7. 19. 67 
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we immediately observe that each number in our list is the product of three distinct 

odd primes. So we might make the conjecture that Carmichael numbers are always 

the product of three distinct odd primes. 

Our conjecture doesn't fare too well, since 

627 45 = 3 . 5 . 4 7 . 89 

is a Carmichael number with four prime factors. This does not mean we should 

abandon our conjecture, merely that we must make some modifications. Notice 

that our conjecture was really three conjectures: that a Carmichael number has 

exactly three prime factors, that the prime factors are distinct, and that the prime 

factors are odd. So we drop the part that is false and state the other two parts 

separately: 

(A) Every Carmichael number is odd. 

(B) Every Carmichael number is a product of distinct primes. 

Let's prove these two assertions. For (A), we use the Carmichael congruence 

an= a (mod n) 

with a = n - 1 -1 (mod n) to get 

(-l)n = -1 (mod n) . 

This implies that n is odd (or n = 2). 
Next we prove (B). Suppose that n is a Carmichael number. Let p be a prime 

number dividing n, and let 

pe+l be the largest power of p dividing n. 

We want to show that e is 0. The fact that n is a Carmichael number means that 

an= a (mod n) for every value of a. In particular, this is true for a= pe, so 

Thus n divides the difference pen - pe, and by assumption pe+l divides n, so we 

conclude that 

Therefore, 
pen-e _ 1 

p 
is an integer. 
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The only way that this can be true is if e = 0, which completes the proof of (B). 
The two properties (A) and (B) of Carmichael numbers are useful, but it would 

be even more useful if we could devise a simple method for checking whether 

or not a number is a Carmichael number. Our earlier verification that 561 is a 

Carmichael number provides a clue. Rather than verifying that an _ a (mod n) , 

we instead checked that an _ a (mod p) for each prime p dividing a. Then the 

congruence modulo p was compared with Fermat's Little Theorem to give us a 

relationship between p and n. The upshot is a criterion for Carmichael numbers 

that we now formally state and prove. 

Theorem 19.1 (Korselt's Criterion for Carmichael Numbers). Let n be a composite 
number. Then n is a Carmichael number if and only if it is odd and every prime p 
dividing n satisfies the following two conditions: 
( 1) p2 does not divide n. 

(2) p - 1 divides n - 1. 

Proof Suppose first that n is a composite number, and further suppose that every 

prime divisor p of n satisfies conditions (1) and (2). We want to prove that n is 

a Carmichael number. Our proof uses the same arguments that we used to prove 

that 561 is a Carmichael number. 

We factor n as 

n = P1P2P3 · · ·Pr 

into a product of primes. From condition ( 1) we know that Pl, P2, ... , Pr are all 

different. We also know from condition (2) that each Pi - 1 divides n - 1, so for 

each i we can factor 

for some integer ki. 

Now take any integer a. We compute the value of an modulo Pi as follows. First, 

if Pi divides a, then clearly 

an - 0 = a (mod Pi) ·  

Otherwise Pi does not divide a and we can use Fermat's Little Theorem to compute 

( P·-l ) ki 
= a i ·a 
- 1 ki ·a (mod Pi) 

=a (mod Pi) ·  

since n - 1 = (Pi - l)ki, 

by Fermat's Little Theorem, which 
tells us that aPi -l 1 (mod Pi), 
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We have now proved that 

a
n 

a (mod Pi) for each i = 1, 2, ... , r. 
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In other words, a
n 

- a is divisible by each of the primes P1, P2, ... , Pr, and hence 

it is divisible by their product n = P1P2 · · · Pr
· 

(Notice that this is where we are 

using the fact that Pl, P2, ... , Pr are all different.) Therefore, 

a
n

= a (mod n) , 

and since we have shown that this is true for every integer a, we have completed 

the proof that n is a Carmichael number. 

This proves one half of Korselt's Criterion: An odd composite number sat

isfying conditions (1) and (2) is a Carmichael number. For the other direction, 

we proved earlier that every Carmichael number satisfies condition (1 ), and in 

Exercise 19 .1 we ask you to show that Carmichael numbers also satisfy condi

tion (2). D 

To illustrate the power of Korselt's Criterion, we verify that two of the exam

ples given previously are actually Carmichael numbers. First, Korselt's Criterion 

tells us that 1729 = 7 · 13 · 19 is a Carmichael number, since 

1729 -1 
7 -1 

= 288, 
1729 -1 
--- =144 

13-1 ' and 
1729 -1 

19 -1 
= 9

5 · 

Second, 627 45 = 3 · 5 · 4 7 · 89 is a Carmichael number, since 

62745 -1 
= 31372 

3-1 ' 

62745 -1 
= 1364 

47-1 ' 

62745 -1 
--- =15686 

5 -1 ' 

62745 -1 
= 713. 89 -1 

In his 1910 paper, Carmichael conjectured that there are infinitely many Car

michael numbers. (Of course, he didn't call them Carmichael numbers!) This 

conjecture remained unproved for more than 70 years. It was finally verified in 

1994 by W.R. Alford, A. Granville, and C. Pomerance. 

The fact that Carmichael numbers exist means that we need a better method for 

checking if a number is composite. The Rabin-Miller test for composite numbers 

is based on the following fact. 

Theorem 19.2 (A Property of Prime Numbers). Let p be an odd prime and write 

with q odd. 
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Let a be any number not divisible by p. Then one of the following two conditions 
is true: 
(i) aq is congruent to 1 modulo p. 

(ii) One of the numbers aq, a
2q, a

4q, ... , a
2k-iq is congruent to -1 modulo p. 

Proof Fermat's Little Theorem tells us that ap-
l - 1 (mod p ). This means that, 

when we look at the list of numbers 

q 2q 4q 2k-l 2kq a , a , a , ... , a q' a , 

we know that the last number in the list is congruent to 1 modulo p (since 2kq 

equals p - 1). Furthermore, each number in the list is the square of the previous 

number. Therefore, one of the following two possibilities must be true: 

(i) The first number in the list is congruent to 1 modulo p. 

(ii) Some number in the list is not congruent to 1 modulo p, but when squared, it 

becomes congruent to 1 modulo p. The only number fitting this description 

is -1 modulo p, so in this case the list contains -1 modulo p. 

This completes the proof. D 

Turning the preceding property of prime numbers on its head, we obtain a test 

for composite numbers called the Rabin-Miller test. Thus, if n is an odd number 

and if n does not have the aforementioned prime number property, then we know 

it must be a composite number. Furthermore, if n does have the prime number 

property for a lot of different values of a, then it is likely that n is prime. 

Theorem 19.3 (Rabin-Miller Test for Composite Numbers). Let n be an odd inte
ger and write n - 1 = 2k q with q odd. If both of the following conditions are true 

for some a not divisible by n, then n is a composite number. 

(a) aq "¥:- 1 (mod n) 
(b) a

2iq "¥:- -1 (mod n)forall i = 0, 1, ... , k - 1 

We have already verified that the Rabin-Miller test works, since if n satis

fies (a) and (b), then it does not satisfy the prime number property described in 

Theorem 19.2, so it must be composite. Note that the Rabin-Miller test is very 

fast and easy to implement on a computer, since, after computing aq (mod n), we 

simply compute a few squares modulo n. 
For any particular choice of a, the Rabin-Miller test either conclusively proves 

that n is composite or suggests that n might be prime. A Rabin-Miller witness for 

the compositeness of n is a number a for which the Rabin-Miller test successfully 
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proves that n is composite. The reason that the Rabin-Miller test is so useful is 

due to the following fact, which is proved in more advanced texts. 

If n is an odd composite number, then at least 

7 5 % of the numbers a between 1 and n - 1 act 

as Rabin-Miller witnesses for n. 

In other words, every composite number has lots of Rabin-Miller witnesses to 

its compositeness, so there aren't any "Carmichael-type numbers" for the Rabin

Miller test. 

For example, if we randomly choose 100 different values for a, and if none of 

them are Rabin-Miller witnesses for n, then the probability4 of n being composite 

is less than 0.25100, which is approximately 6 · 10-
61 . And if you feel that this is 

taking too much of a risk, you can always try another few hundred values for a. 

In practice, if n is composite, then just a few Rabin-Miller tests virtually always 

reveal this fact. 

To illustrate, we apply the Rabin-Miller test with a = 2 to the number n = 

561, which you may recall is a Carmichael number. We have n-1 = 560 = 2
4 

·35, 

so we compute 

235 263 (mod 561), 
22·35 _ 2632 166 (mod 561), 
24·35 = 1662 = 67 (mod 561), 
28'35 672 1 (mod 561). 

The first number 235 (mod 561) is neither 1 nor -1, and the other numbers are 

not -1, so 2 is a Rabin-Miller witness to the fact that 561 is a composite number. 

As a second example, we take the larger number n = 172947529. We have 

n - 1 = 172947528 = 23 · 21618441. 

We apply the Rabin-Miller test with a= 17, and at the first step we get 

1721618441 
= 1 (mod 172947529). 

So 17 is not a Rabin-Miller witness for n. Next we try a= 3, but unfortunately 

321618441 
= -1 (mod 17294 7529), 

4We have cheated a little bit. We really need to compute what is called a conditional probability, 
in this case the probability that n is composite given that 100 values of a fail to be witnesses. The 
correct bound for the probability is approximately 0.25100 · ln(n). 
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so 3 also fails to be a Rabin-Miller witness. At this point we might suspect that n 

is prime, but if we try another value, such as a = 23, we find

2321618441
_ 40063806 (mod 172947529),

232·21618441
_ 2257065 (mod 172947529),

234.21618441
_

 1 (mod 172947529),

so 23 is a Rabin-Miller witness that n is actually composite. In fact, n is a Carmi

chael number, but it's not so easy to factor (by hand). 

Exercises 

19.1. Let n be a Carmichael number and let p be a prime number that divides n. 
(a) Finish the proof of Korselt's Criterion by proving that p - 1 divides n - 1. [Hint.

We will prove in Chapter 28 that for every prime p there is a number g whose pow

ers g, g
2

, g
3

, ... , gp-l 
are all different modulo p. (Such a number is called a primitive

root.) Try putting a= g into the Carmichael congruence a
n 

a (mod n) .]

(b) Prove that p - 1 actually divides the smaller number � - 1. 

19.2. Are there any Carmichael numbers that have only two prime factors? Either find an 

example or prove that none exists. 

19.3. Use Korselt's Criterion to determine which of the following numbers are Carmichael 

numbers. 

(a) 1105
(e) 8911
(i) 126217

(b) 1235
(f) 10659
(j) 162401

(c) 2821
(g) 19747
(k) 172081

(d) 6601
(h) 105545
(1) 188461

19.4. Suppose that k is chosen so that the three numbers

are all prime numbers. 

6k + 1, 12k + 1, 18k + 1 

(a) Prove that their product n = (6k + 1)(12k + 1)(18k + 1) is a Carmichael number.

(b) Find the first five values of k for which this method works and give the Carmichael

numbers produced by the method. 

19.5. Find a Carmichael number that is the product of five primes. 

19.6. £l (a) Write a computer program that uses Korselt's Criterion to check if a num

ber n is a Carmichael number. 

(b) Earlier we listed all Carmichael numbers that are less than 10,000. Use your program

to extend this list up to 100,000. 

(c) Use your program to find the smallest Carmichael number larger than 1,000,000.
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19.7. (a) Let n = 1105, son - 1 = 24 · 69. Compute the values of

140 

269 (mod 1105), 22·59 (mod 1105), 24·59 (mod 1105), 28'69 (mod 1105), 

and use the Rabin-Miller test to conclude that n is composite. 

(b) Use the Rabin-Miller test with a = 2 to prove that n = 294409 is composite. Then

find a factorization of n and show that it is a Carmichael number. 

(c) Repeat (b) with n = 118901521. 

19.8. 

� 

Program the Rabin-Miller test with multiprecision integers and use it to inves

tigate which of the following numbers are composite. 

(a) 155196355420821961 

(b) 155196355420821889 

(c) 285707540662569884530199015485750433489 

(d) 285707540662569884530199015485751094149 



Chapter 20 

Squares Modulo p 

We learned long ago in Chapter 8 how to solve linear congruences, 

ax c (mod m) . 

It's now time to take the plunge and move on to quadratic equations. We devote 

the next three chapters to answering the following types of questions: 

• Is 3 congruent to the square of some number modulo 7?

• Does the congruence x2 -1 (mod 13) have a solution?

• For which primes p does the congruence x2 2 (mod p) have a solution?

We can answer the first two questions right now. To see if 3 is congruent to the 

square of some number modulo 7, we just square each of the numbers from 0 to 6, 

reduce modulo 7, and see if any of them is equal to 3. Thus, 

02 - 0 (mod 7) 

12 1 (mod 7) 

22 4 (mod 7) 

32 2 (mod 7) 

42 2 (mod 7) 

52 4 (mod 7)

62 1 (mod 7). 

So we see that 3 is not congruent to a square modulo 7. In a similar fashion, 

if we square each number from 0 to 12 and reduce modulo 13, we find that the 
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congruence x2 = -1 (mod 13) has two solutions, x = 5 (mod 13) and x = 

8 (mod 13).1 
As always, we need to look at some data before we can even begin to look 

for patterns and make conjectures. Here are some tables giving all the squares 
modulo p for p = 5, 7, 11, and 13. 

b b2 

b b2 0 0 

0 0 1 1 

b b2 1 1 2 4 

b b2 0 0 2 4 3 9 

0 0 1 1 3 9 4 3 

1 1 2 4 4 5 5 12 

2 4 3 2 5 3 6 10 

3 4 4 2 6 3 7 10 

4 1 5 4 7 5 8 12 

Modulo 5 6 1 8 9 9 3 

Modulo 7 9 4 10 9 

10 1 11 4 

Modulo 11 12 1 

Modulo 13 

Many interesting patterns are already apparent from these lists. For example, each 
number (other than 0) that appears as a square seems to appear exactly twice. 
Thus, 5 is both 42 and 72 modulo 11, and 3 is both 42 and 92 modulo 13. In 
fact, if we fold each list over in the middle, the same numbers appear as squares on 
the top and on the bottom. 

How can we describe this pattern with a formula? We are saying that the square 
of the number band the square of the number p - bare the same modulo p. But 
now that we've described our pattern by a formula, it's easy to prove. Thus, 

(p - b) 2 = p 2 - 2pb + b2 
_ b2 (mod p ). 

1 For many years during the nineteenth century, mathematicians were uneasy with the idea of the 

number y=I. Its current appellation "imaginary number" still reflects that disquiet. But if you work 

modulo 13, for example, then there's nothing mysterious about y=I. In fact, 5 and 8 are both square 

roots of -1 modulo 13. 
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So if we want to list all the (nonzero) numbers that are squares modulo p, we only 

need to compute half of them: 

12 (mod p), 22 (mod p), 32 (mod p), . . .  , 
p-l ( ) 2 

2 
(mod p). 

Our goal is to find patterns that can be used to distinguish squares from nonsquares 

modulo p. Ultimately, we will be led to one of the most beautiful theorems in all 

number theory, the Law of Quadratic Reciprocity, but first we must perform the 

mundane task of assigning some names to the numbers we want to study. 

A nonzero number that is congruent to a square modulo p is called 

a quadratic residue modulo p. A number that is not congruent to a 

square modulo p is called a (quadratic) nonresidue modulo p. We 

abbreviate these long expressions by saying that a quadratic residue is 

a QR and a quadratic nonresidue is an NR. A number that is congruent 

to 0 modulo p is neither a residue nor a nonresidue. 

To illustrate this terminology using the data from our tables, 3 and 12 are QRs 

modulo 13, while 2 and 5 are NRs modulo 13. Note that 2 and 5 are NRs because 

they do not appear in the list of squares modulo 13. The full set of QRs modulo 13 
is {1, 3, 4, 9, 10, 12}, and the full set ofNRs modulo 13 is {2, 5, 6, 7, 8, 11}. Simi

larly, the set of QRs modulo 7 is {1, 2, 4} and the set of NRs modulo 7 is {3, 5, 6}. 

Notice that there are six quadratic residues and six nonresidues modulo 13, 
and there are three quadratic residues and three nonresidues modulo 7. Using our 

earlier observation that (p - b)2 b2 (mod p) , we can easily verify that there are 

an equal number of quadratic residues and nonresidues modulo any (odd) prime. 

Theorem 20.1. Let p be an odd prime. Then there are exactly (p - 1) /2 quadratic 
residues modulo p and exactly (p - 1) /2 nonresidues modulo p. 

Proof The quadratic residues are the nonzero numbers that are squares modulo p, 

so they are the numbers 

12 , 22 , . • .  , (p -1)2 (mod p) . 

But, as we noted above, we only need to go halfway, 

2 2 p-1 ( ) 2 
1 , 2 , ... , 

2 
(mod p) , 

since the same numbers are repeated in reverse order if we square the remaining 

numbers 
p+ 1 2 2 

( ) 2 

2 
, .. ., (p - 2) , (p - 1) (mod p) . 



[Chap. 20] Squares Modulo p 144 

So in order to show that there are exactly (p - 1) /2 quadratic residues, we need to 

check that the numbers 12, 22, . . .  , ( P; i) 
2 

are all different modulo p. 
Suppose that bi and b2 are numbers between 1 and (p - 1) /2, and suppose that 

by = b§ (mod p). We want to show that bi = b2. The fact that by = b§ (mod p) 
means that 

p divides by - b§ =(bi - b2)(bi + b2)· 

However, bi+ b2 is between 2 and p- 1, so it can't be divisible by p. Thus p must 
divide bi - b2. But lbi - b2I < (p - 1)/2, so the only way for bi - b2 to be divis

ible by p is to have bi = b2. This shows that the numbers 12, 22, ... , ( P; i ) 
2 

are 
all different modulo p, so there are exactly (p - 1)/2 quadratic residues modulo p. 
Now we need only observe that there are p - 1 numbers between 1 and p - 1, so 
if half of them are quadratic residues, the other half must be nonresidues. D 

Suppose that we take two quadratic residues and multiply them together. Do 
we get a QR or an NR, or do we sometimes get one and sometimes the other? 
For example, 3 and 10 are QRs modulo 13, and their product 3 · 10 = 30 
4 is again a QR modulo 13. Actually, this should have been clear without any 
computation, since if we multiply two squares, we should get a square. We can 
formally verify this in the following way. Suppose that ai and a2 are both QRs 
modulo p. This means that there are numbers bi and b2 such that ai _ by (mod p) 
and a2 b§ (mod p). Multiplying these two congruences together, we find that 
aia2 = (bib2)2 (mod p) , which shows that aia2 is a QR. 

The situation is less clear if we multiply a QR by an NR, or if we multiply two 
NRs together. Here are some examples using the data in our tables: 

QR x NR = ?? (mod p) NR x NR = ?? (mod p) 
2 x 5 3 (mod 7) NR 3 x 5 1 (mod 7) QR 

5 x 6 8 (mod 11) NR 6 x 7 _ 9 (mod 11) QR 
4 x 5 7 (mod 13) NR 5 x 11 3 (mod 13) QR 

10 x 7 5 (mod 13) NR 7 x 11 = 12 (mod 13) QR 

Thus, multiplying a quadratic residue and a nonresidue seems to yield a nonresidue, 
while the product of two nonresidues always seems to be a residue. Symbolically, 
we might write 

QRx QR= QR, QR x NR= NR, NR x NR= QR. 

We've already seen that the first relation is true, and we now verify the other two 
relations. 
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Theorem 20.2 (Quadratic Residue Multiplication Rule). (Version 1) Let p be an 

odd prime. Then: 

(i) The product of two quadratic residues modulo p is a quadratic residue. 

(ii) The product of a quadratic residue and a nonresidue is a nonresidue. 

(iii) The product of two nonresidues is a quadratic residue. 

These three rules can by summarized symbolically by the formulas 

QR x QR= QR, QR x NR =NR, NR x NR =QR. 

Proof We have already seen that QR x QR = QR. Suppose next that ai is a QR, 

say ai =bi (mod p), and that a2 is an NR. We are going to assume that aia2 is a 

QR and derive a contradiction. The assumption that ai a2 is a QR means that it is 

congruent to b§ for some b3, so we have 

b� = aia2 = bia2 (mod p). 

Note that gcd (bi, p) = 1, since p f a i and a i = bi, so the Linear Congruence 

Theorem (Theorem 8.1) says that we can find an inverse for bi modulo p. In other 

words, we can find some ci such that ci bi _ 1 (mod p). Multiplying both sides of 

the above congruence by ci gives 

cib� ciaia2 (cibi)2a2 a2 (mod p). 

Thus a2 (cib3)2 (mod p) is a QR, contradicting the fact that a2 is a NR. This 

completes the proof that 

QR x NR= NR. 

We are left to deal with the product of two NRs. Let a be an NR and consider 

the set of values 

a, 2a, 3a, ... , (p - 2)a, (p - l)a (mod p) . 

By an argument we've used before (see Lemma 9.2 on page 68), these are just the 
numbers 1, 2, ... , (p - 1) rearranged in some different order. In particular, they 

include the � (p - 1) QRs and the � (p - 1) NRs. However, as we already proved, 

each time that we multiply a by a QR, we get an NR, so the � (p - 1) products 

ax QR 

already give us all !(P - 1) NRs in the list. Hence when we multiply a by an 

NR, the only possibility is that it is equal to one of the QRs in the list, because the 

a x QR products have already used up all of the NRs in the list. 2 D 

2"When you have eliminated all of the quadratic residues, the remaining numbers, no matter how 

improbable, must be the nonresidues!" (with apologies to Sherlock Holmes and Sir Arthur Conan 

Doyle). 
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This completes the proof of the quadratic residue multiplication rules. Now 

take a minute to stare at 

QR x QR= QR, QR x NR=NR, NR x NR= QR. 

Do these rules remind you of anything? If not, here's a hint. Suppose that we try 

to replace the symbols QR and NR with numbers. What numbers would work? 

That's right, the symbol QR behaves like + 1 and the symbol NR behaves like -1. 
Notice that the somewhat mysterious third rule, the one that says that the product 

of two nonresidues is a quadratic residue, reflects the equally mysterious rule3

(-1) x (-1) = +1.
Having observed that QRs behave like + 1 and NRs behave like -1, Adrien

Marie Legendre introduced the following useful notation. 

The Legendre symbol of a modulo p is (a) { 1 if a is a quadratic residue modulo p, 

p 
= -1 if a is a nonresidue modulo p. 

For example, data from our earlier tables says that 

(i33) = 1, (�) = -11 3 ' G) = 1, G) = -1.

Using the Legendre symbol, our quadratic residue multiplication rules can be given 

by a single formula. 

Theorem 20.3 (Quadratic Residue Multiplication Rule). (Version 2) Let p be an 

odd prime. Then 

The Legendre symbol is useful for making calculations. For example, suppose 

that we want to know if 75 is a square modulo 97. We can compute 

G�) = c·:/) (:1)(:1)(957) (:1) 
3You may no longer consider the formula ( -1) x ( -1) = + 1 mysterious, since it's so familiar

to you. But you should have found it mysterious the first time you saw it. And if you stop to think 

about it, there is no obvious reason why the product of two negative numbers should equal a positive 

number. Can you come up with a convincing argument that ( -1) x ( -1) must equal + 1? 
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Notice that it doesn't matter whether (957) is+ 1 or -1, since it appears twice, and
( +1)2 

= (-1)2
= 1. Now we observe that 102

_ 3 (mod 97), so 3 is a QR. 
Hence, 

G�) = ( 9
3
7) = 1. 

Of course, we were lucky in being able to recognize 3 as a QR modulo 97. Is there 
some way to evaluate a Legendre symbol like (937) without relying on luck or trial
and error? The answer is yes, but that's a topic for another chapter. 

Exercises 

20.1. Make a list of all the quadratic residues and all the nonresidues modulo 19. 

20.2. For each odd prime p, we consider the two numbers

A = sum of all 1 ::; a < p such that a is a quadratic residue modulo p, 
B = sum of all 1 :S a < p such that a is a nonresidue modulo p. 

For example, if p = 11, then the quadratic residues are

12 1 (mod 11), 22 
4 (mod 11), 32 

9 (mod 11),
4

2 
5 (mod 11), 5

2 3 (mod 11), 

so 
A = 1 + 4 + 9 + 5 + 3 = 22 and B = 2 + 6 + 7 + 8 + 10 = 33. 

(a) Make a list of A and B for all odd primes p < 20. 
(b) What is the value of A+ B? Prove that your guess is correct.
(c) Compute A mod p and B mod p. Find a pattern and prove that it is correct. [Hint.

See Exercise 7.4 for a formula for 12 + 22 + · · · + n2 that might be useful.]
(d) Compile some more data and give a criterion on p which ensures that A= B. After

reading Chapter 21, you will be asked to prove your criterion. 

(e) li, Write a computer program to compute A and B, and use it to make a table for
all odd p < 100. If A -=!=- B, which one tends to be larger, A or B? Try to prove that
your guess is correct, but be forewarned that this is a very difficult problem. 

20.3. A number a is called a cubic residue modulo p if it is congruent to a cube modulo p, 
that is, if there is a number b such that a b3 (mod p). 
(a) Make a list of all the cubic residues modulo 5, modulo 7, modulo 11, and modulo 13. 
(b) Find two numbers ai and bi such that neither ai nor bi is a cubic residue modulo 19,

but ai bi is a cubic residue modulo 19. Similarly, find two numbers a2 and b2 such 
that none of the three numbers a2, b2, or a2 b2 is a cubic residue modulo 19. 

(c) If p 2 (mod 3), make a conjecture as to which a's are cubic residues. Prove that
your conjecture is correct. 



Chapter 21 

Is -1 a Square Modulo p? 

Is 2? 

In the previous chapter we took various primes p and looked at the a' s that were 
quadratic residues and the a's that were nonresidues. For example, we made a table 
of squares modulo 13 and used the table to see that 3 and 12 are QRs modulo 13, 
while 2 and 5 are NRs modulo 13.

In keeping with all of the best traditions of mathematics, we now tum this 
problem on its head. Rather than taking a particular prime p and listing the a's that 
are QRs and NRs, we instead fix an a and ask for which primes p is a a QR. To 
make it clear exactly what we're asking, we start with the particular value a= -1. 
The question that we want to answer is as follows: 

For which primes p is -1 a QR? 

We can rephrase this question in other ways, such as "For which primes p does 
the congruence x2 _ -1 (mod p) have a solution?" and "For which primes p is
(pl) = 1 ?"

As always, we need some data before we can make any hypotheses. We can 

answer our question for small primes in the usual mindless way by making a table 
of 12, 22, 32, . . . (mod p) and checking if any of the numbers are congruent to -1
modulo p. So, for example, -1 is not a square modulo 3, since 1 2 '¥=- -1 (mod 3)
and 22 '¥=- -1 (mod 3), while -1 is a square modulo 5, since 22 -1 (mod 5).
Here's a more extensive list. 

p 3 5 7 11 13 17 19 23 29 31 

Solution(s) to 
x2 -1 (mod p)

NR 2,3 NR NR 5,8 4,13 NR NR 12,17 NR 
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Reading from this table, we compile the fallowing data: 

-1 is a quadratic residue for p = 5, 13, 17, 29. 

-1 is a nonresidue for p = 3, 7, 11, 19, 23, 31. 

149 

It's not hard to discern the pattern. If p is congruent to 1 modulo 4, then -1 
seems to be a quadratic residue modulo p, and if p is congruent to 3 modulo 4, 
then -1 seems to be a nonresidue. We can express this guess using Legendre 
symbols, 

ifp - 1(mod4), 

if p - 3 (mod 4). 

Let's check our conjecture on the next few cases. The next two primes, 37 and 41, 
are both congruent to 1 modulo 4 and, sure enough, 

x2 _ -1 (mod 37) has the solutions x _ 6 and 31 (mod 37), and 

x2 _ -1 (mod 41) has the solutions x _ 9 and 32 (mod 41). 

Similarly, the next two primes 43 and 4 7 are congruent to 3 modulo 4, and we 
check that -1 is a nonresidue for 43 and 4 7. Our guess is looking good! 

The tool that we use to verify our conjecture might be called the "Square Root 
of Fermat's Little Theorem." How, you may well ask, does one take the square root 
of a theorem? Recall that Fermat's Little Theorem (Chapter 9) says 

ap-l - 1 (mod p). 

We won't really be taking the square root of this theorem, of course. Instead, we 
take the square root of the quantity aP-l and ask for its value. So we want to 
answer the following question: 

Let A= a(p-l)/2. W hat is 
the value of A modulo p? 

One thing is obvious. If we square A, then Fermat's Little Theorem tells us that 

A2 = ap-l = 1 (mod p). 

Hence, p divides A2 - 1 = (A - l)(A + 1), so either p divides A - 1 or p di
vides A+ 1. (Notice how we are using Lemma 7.1, which is the property of prime 
numbers that we proved on page 46.) Thus A must be congruent to either + 1 
or -1. 
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Here are a few random values of p, a, and A. For comparison purposes, we 

have also included the value of the Legendre symbol (�). Do you see a pattern? 

p 11 31 47 97 173 409 499 601 941 1223 

a 3 7 10 15 33 78 33 57 222 129 

A (mod p) 1 1 -1 -1 1 -1 1 -1 1 1 

(�) 1 1 -1 -1 1 -1 1 -1 1 1 

It certainly appears that A - 1 (mod p) when a is a quadratic residue and that 

A -l (mod p) when a is a nonresidue. In other words, it looks like A (mod p) 
has the same value as the Legendre symbol (�). We use a counting argument to ver

ify this assertion, which goes by the name of Euler's Criterion. [For an alternative 

proof of this important result, see Exercise 28.8(c).] 

Theorem 21.1 (Euler's Criterion). Let p be an odd prime. Then 

a (y-l) 12 = (;) (mod p). 

Proof Suppose first that a is a quadratic residue, say a b2 (mod p). Then Fer-

mat's Little Theorem (Theorem 9.1) tells us that 

a(p-1)/2 = (b2)(p-1)/2 = bP-l = 1 (mod p). 

Hence a(p-l)/2 (�) (mod p), which is Euler's Criterion when a is a quadratic 

residue. 

We next consider the congruence 

x(p-l)/2 - 1 0 (mod p). 

We have just proven that every quadratic residue is a solution to this congruence, 

and we know from Theorem 20.1 that there are exactly � (p - 1) distinct quadratic 

residues. We also know from the Polynomial Roots Mod p Theorem (Theorem 8.2 

on page 60) that this polynomial congruence can have at most � (p - 1) distinct 

solutions. Hence 

{solutions to X (p-l) /2 - 1 = 0 (mod p) } = {quadratic residues modulo p} . 

Now let a be a nonresidue. Fermat's Little Theorem tells us that aP-l -
1 (mod p), so 

0 = ap-l - 1 = (a(p-l)/2 - 1) (a(p-l)/2 + 1) (mod p). 
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The first factor is not zero modulo p, because we already showed that the solutions 

to X(p-l)/2 - 1 0 (mod p) are the quadratic residues. Hence the second factor 

must vanish modulo p, so 

a(p-!J/2 = -1 = G) (mod p). 

This shows that Euler's Criterion is also true for nonresidues. D 

Using Euler's Criterion, it is very easy to determine if -1 is a quadratic residue 

modulo p. For example, if we want to know whether -1 is a square modulo the 

prime p = 6911, we just need to compute 

(-1)(6911-1)/2 = 

(-1)3455 
= -1. 

Euler's Criterion then tells us that 

(69�1) _ -1 (mod 6911). 

But (�) is always either + 1 or -1, so in this case we must have (69{1) -1. 
Hence, -1 is a nonresidue modulo 6911. 

Similarly, for the prime p = 7817 we find that 

(-1)(7817-1)/2 = 

(-1)3908 
= 1. 

Hence, ( 78{7) = 1, so -1 is a quadratic residue modulo 7817. Observe that, 

although we now know that the congruence 

x2 
_ -1 (mod 7817) 

has a solution, we still don't have any efficient way to find a solution. The solutions 

turn out to be x _ 2564 (mod 7817) and x = 5253 (mod 7817). 
As these two examples make clear, Euler's Criterion can be used to determine 

exactly which primes have -1 as a quadratic residue. This elegant result, which 

answers the initial question in the title of this chapter, is the first part of the Law of 

Quadratic Reciprocity. 

Theorem 21.2 (Quadratic Reciprocity). (Part I) Let p be an odd prime. Then 

-1 is a quadratic residue modulo p if p _ 1 (mod 4 ), and 
-1 is a nonresidue modulo p if p _ 3 (mod 4 ). 

In other words, using the Legendre symbol, 

if p 1 (mod 4), 
if p = 3 (mod 4). 
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Proof Euler's Criterion says that 

(-l)(p-l)/2 _ ( /) (modp). 

Suppose first that p _ 1 (mod 4), say p = 4k + 1. Then 

(-l)(p-l)/2 = (-1)2k = 1, so 1 _ ( /) (modp). 
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But c-;/) is either + 1 or -1, so it must equal 1. This proves that if p _ 1 (mod 4) 
then (-;1) = 1. 

Next we suppose that p _ 3 (mod 4), say p = 4k + 3. Then 

(-l)(p-l)/2 = (-1)2k+l = -1, so - 1 _ (
P

l) (mod p). 

This shows that (-;1) must equal -1, which completes the proof of Quadratic Reci

procity (Part I). D 

We can use the first part of Quadratic Reciprocity to answer a question left 

over from Chapter 12. As you may recall, we showed that there are infinitely many 

primes that are congruent to 3 modulo 4, but we left unanswered the analogous 

question for primes congruent to 1 modulo 4. 

Theorem 21.3 (Primes 1(Mod4) Theorem). There are infinitely many primes that 

are congruent to 1 modulo 4. 

Proof Suppose we are given a list of primes Pl, P2, ... , 
P

r, all of which are con

gruent to 1 modulo 4. We are going to find a new prime, not in our list, that is 

congruent to 1 modulo 4. Repeating this process gives a list of any desired length. 

Consider the number 

A= (2P1P2 · · · Pr)2 + 1. 

We know that A can be factored into a product of primes, say 

It is clear that q1, q2, ... , q8 are not in our original list, since none of the p/s di

vide A. So all we need to do is show that at least one of the q/s is congruent to 1 
modulo 4. In fact, we'll see that all of them are. 
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First we note that A is odd, so all the qi's are odd. Next, each qi divides A, so 

(2p1p2 ···Pr )2 + 1 =A= 0 (mod qi)· 

This means that x = 2p1p2 · · · Pr is a solution to the congruence 

x2 -1 (mod qi), 

so -1 is a quadratic residue modulo qi. Now Quadratic Reciprocity tells us that 

qi = 1 (mod 4). D 

We can use the procedure described in this proof to produce a list of primes 

that are congruent to 1 modulo 4. Thus, if we start with Pl = 5, then we form 

A= (2p1)2 + 1 = 101, so our second prime is p2 = 101. Then 

A = (2p1p2)2 + 1 = 1020101, 

which is again prime, so our third prime is p3 = 1020101. We'll go one more step, 

A= (2p1p2p3)2 + 1 

= 1061522231810040101 

= 53 . 1613 . 12417062216309. 

Notice that all the primes 53, 1613, and 12417062216309 are congruent to 1 mod

ulo 4, just as predicted by the theory. 

Having successfully answered the first question in the title of this chapter, we 

move on to the second question and consider a= 2, the "oddest" of all primes. 

Just as we did with a = -1, we are looking for some simple characterization 

for the primes p such that 2 is a quadratic residue modulo p. Can you find the 

pattern in the following data, where the line labeled x2 = 2 gives the solutions to 

x2 = 2 (mod p) if 2 is a quadratic residue modulo p and is marked NR if 2 is a 

nonresidue? 

p 3 5 7 11 13 17 19 23 29 31 

x2 _ 2 NR NR 3,4 NR NR 6,11 NR 5,18 NR 8,23 

p 37 41 43 47 53 59 61 67 71 73 

x2 = 2 NR 17,24 NR 7,40 NR NR NR NR 12,59 32,41 

p 79 83 89 97 101 103 107 109 113 127 

x2 _ 2 9,70 NR 25,64 14,83 NR 38,65 NR NR 51,62 16,111 
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Here's the list of primes separated according to whether 2 is a residue or a non

residue. 

2 is a quadratic residue for p = 7, 17, 23, 31, 41, 47, 71, 73, 

79,89,97,103,113,127 

2 is a nonresidue for p = 3, 5, 11, 13, 19, 29, 37, 43, 53, 59, 

61,67,83,101,107,109 

For a = -1, it turned out that the congruence class of p modulo 4 was crucial. 

Is there a similar pattern if we reduce these two lists of primes modulo 4? Here's 

what happens if we do. 

7,17,23,31,41,47,71,73, 79,89,97,103,113,127 

= 3, 1, 3, 3, 1, 3, 3, 1, 3, 1, 1, 3, 1, 3 (mod 4), 

3,5,11,13,19,29,37,43,53,59,61,67,83,101,107,109 

3, 1, 3, 1, 3, 1, 1, 3, 1, 3, 1, 3, 3, 1, 3, 1 (mod 4) . 

This doesn't look too promising. Maybe we should try reducing modulo 3. 

7,17,23,31,41,47,71,73, 79,89,97,103,113,127 

1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 2, 1 (mod 3) 

3,5,11,13,19,29,37,43,53,59,61,67,83,101,107,109 

= 0, 2, 2, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1 (mod 3) . 

This doesn't look any better. Let's make one more attempt before we give up. What 

happens if we reduce modulo 8? 

7,17,23,31,41,47,71,73, 79,89,97,103,113,127 

= 7, 1, 7, 7, 1, 7, 7, 1, 7, 1, 1, 7, 1, 7 (mod 8) 

3,5,11,13,19,29,37,43,53,59,61,67,83,101,l07,109 

= 3, 5, 3, 5, 3, 5, 5, 3, 5, 3, 5, 3, 3, 5, 3, 5 (mod 8) . 

Eureka! It surely can't be a coincidence that the first line is all l's and 7's and the 

second line is all 3's and 5's. This suggests the general rule that 2 is a quadratic 

residue modulo p if p is congruent to 1 or 7 modulo 8 and that 2 is a nonresidue if p 

is congruent to 3 or 5 modulo 8. In terms of Legendre symbols, we would write 

if p 1 or 7 (mod 8) , 

if p = 3 or 5 (mod 8) . 
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Can we use Euler's Criterion to verify our guess? Unfortunately, the answer 

is no, or at least not in any obvious way, since there doesn't seem to be an easy 

method to calculate 2(p-l)/2 (mod p). However, if you go back and examine our 

proof of Fermat's Little Theorem in Chapter 9, you'll see that we took the numbers 

1, 2, ... , p - 1, multiplied each one by a, and then multiplied them all together. 

This gave us a factor of ap-l to pull out. In order to use Euler's Criterion, we only 

want ! (p -1) factors of a to pull out, so rather than starting with all of the numbers 

from 1 to p, we just take the numbers from 1 to ! (p - 1). We illustrate this idea, 

which is due to Gauss, to determine if 2 is a quadratic residue modulo 13. 
We begin with half the numbers from 1 to 12: 1, 2, 3, 4, 5, 6. If we multiply 

each by 2 and then multiply them together, we get 

2 . 4 . 6 . 8 . 10 . 12 = (2 . 1) (2 . 2) (2 . 3) (2 . 4) (2 . 5) (2 . 6) 

= 26 . 1 . 2 . 3 . 4 . 5 . 6 

= 26. 6!. 

Notice the factor of 26 
= 2(13-l)/2, which is the number we're really interested in. 

Gauss's idea is to take the numbers 2, 4, 6, 8, 10, 12 and reduce each of them 

modulo 13 to get a number lying between -6 and 6. The first three stay the same, 

but we need to subtract 13 from the last three to get them into this range. Thus, 

2 = 2 (mod 13) 
8 _ -5 (mod 13) 

4 = 4 (mod 13) 
10 _ -3 (mod 13) 

Multiplying these numbers together, we find that 

6 = 6 (mod 13) 
12 = -1 (mod 13). 

2 . 4 . 6 . 8 . 10 . 12 = 2 . 4 . 6 . (-5) . (-3) . (-1) 

-(-1)3·2·4·6·5·3·1 

_ -6! (mod 13). 

Equating these two values of 2 · 4 · 6 · 8 · 10 · 12 (mod 13), we see that 

26 · 6! _ -6! (mod 13). 

This implies that 26 
_ -1 (mod 13), so Euler's Criterion tells us that 2 is a non

residue modulo 13. 
Let's briefly use the same ideas to check if 2 is a quadratic residue modulo 17. 

We take the numbers from 1 to 8, multiply each by 2, multiply them together, and 

calculate the product in two different ways. The first way gives 

2 . 4 . 6 . 8 . 10 . 12 . 14 . 16 = 28 . 8!. 
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For the second way, we reduce modulo 1 7 to bring the numbers into the range 

from -8 to 8. Thus, 

2 2 (mod 17) 
8 = 8 (mod 17) 

14 - -3 (mod 17) 

4 4 (mod 17) 
10 = -7 (mod 1 7) 
16 - - 1  (mod 1 7). 

6 6(mod17) 
12 = -5 (mod 17) 

Multiplying these together gives 

2 . 4. 6 . 8 . 10 . 12 . 14. 16 = 2 . 4. 6 . 8 . (-7) . (-5) . (-3) . (-1) 

= (- 1)4 · 8! (mod 17). 

Therefore, 28 · 8! = (-1)4 · 8! (mod 17), so 28 = 1 (mod 17), and hence 2 is a 

quadratic residue modulo 1 7. 
Now let's think about Gauss's method a little more generally. Let p be any odd 

prime. To make our formulas simpler, we let 

P=
p- l. 

2 

We start with the even numbers 2, 4, 6, ... , p - 1. Multiplying them together and 

factoring out a 2 from each number gives 

2 · 4 · 6 · · · (p - 1) = 2(p-l)/2 
· 1 · 2 · 3 · · · 

p - l = 2P 
· P!. 

2 

The next step is to take the list 2, 4, 6, ... , p - 1 and reduce each number mod

ulo p so that it lies in the range from -P to P, that is, between -(p - 1) / 2 and 

(p - 1) /2. The first few numbers won't change, but at some point in the list we'll 

start hitting numbers that are larger than (p - 1) /2, and each of these large num

bers needs to have p subtracted from it. Notice that the number of minus signs 

introduced is exactly the number of times we need to subtract p. In other words, 

(Number of integers in the list) 
Number of minus signs= 2, 4, 6, ... , (p - 1) . 

that are larger than ! (p - 1) 

The following illustration may help to explain this procedure. 

2. 4. 6. 8. 10. 12... . .. (p - 5) . (p - 3) . (p - 1) 

Numbers s (p - 1)/2 Numbers > (p - 1)/2. 
are left unchanged. Need to subtract p from each. 

Comparing the two products, we get 

2P. P! = 2. 4. 6 ... (p _ l) = (-l)(number of minus signs). P! (mod p), 



[Chap. 21] Is -1 a Square Modulo p? Is 2? 

so canceling P! from each side gives the fundamental formula 

2(p-l) /2 ( _ 1) (number of minus signs) (mod p).
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Using this formula, it is easy to verify our earlier guess, thereby answering the 

second question in the chapter title. 

Theorem 21.4 (Quadratic Reciprocity). (Part II) Let p be an odd prime. Then 2
is a quadratic residue modulo p if p is congruent to 1 or 7 modulo 8, and 2 is a 
nonresidue modulo p if p is congruent to 3 or 5 modulo 8. In terms of the Legendre 
symbol, 

if p 1or7 (mod 8) ,

if p 3 or 5 (mod 8).
Proof There are actually four cases to consider, depending on the value of p mod

ulo 8. We do two of them and leave the other two for you to do. 

We start with the case that p _ 3 (mod 8) , say p = 8k + 3. We need to list the

numbers 2, 4, ... , p -1 and determine how many of them are larger than ! (p - 1). 
In this case, p - 1=8k+2 and !(P - 1) = 4k + 1, so the cutoff is as indicated

in the following diagram: 

2. 4. 6 ... 4k ( 4k + 2) . ( 4k + 4) ... (8k + 2).

We need to count how many numbers there are to the right of the vertical bar. In 

other words, how many even numbers are there between 4k + 2 and 8k + 2? The 

answer is 2k + 1. (If this isn't clear to you, try a few values for k and you'll see

why it's correct.) This shows that there are 2k + 1 minus signs, so the fundamental

formula given above tells us that 

2(p-l)/2 - (-1)2k+l 
= -1 (mod p).

Now Euler's Criterion says that 2 is a nonresidue, so we have proved that 2 is a 

nonresidue for any prime p that is congruent to 3 modulo 8. 

Next let's look at the primes that are congruent to 7 modulo 8, say p = 8k + 7. 
Now the even numbers 2, 4, ... ,p - 1 are the numbers from 2 to 8k + 6, and the

midpoint is ! (p - 1) = 4k + 3. The cutoff in this case is

2 . 4 . 6 ... ( 4k + 2) ( 4k + 4) . ( 4k + 6) ... (8k + 6). 

There are exactly 2k + 2 numbers to the right of the vertical bar, so we get 2k + 2 

minus signs. This yields 

2(p-l)/2 (-1)2k+2 1 (mod p),

so Euler's Criterion tells us that 2 is a quadratic residue. This proves that 2 is a 

quadratic residue for any prime p that is congruent to 7 modulo 8. D
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Exercises 
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21.1. Determine whether each of the following congruences has a solution. (All of the 
moduli are primes.) 

(a) x2 - -1(mod5987) 
(b) x2 _ 6780 (mod 6781) 

(c) x2 + 14x - 35 - 0 (mod 337) 
(d) x2 - 64x + 943 _ 0 (mod 3011) 

[Hint. For (c), use the quadratic formula to find out what number you need to take the 
square root of modulo 337, and similarly for (d).] 

21.2. Use the procedure described in the Primes 1 (Mod 4) Theorem to generate a list of 
primes congruent to 1 modulo 4, starting with the seed p1 = 17. 

21.3. Here is a list of the first few primes for which 3 is a quadratic residue and a non
residue. 

Quadratic Residue: p = 11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109 
N"onresidue: p = 5, 7,17,19,29,31,41,43,53,67, 79,89,101,103,113,127 

Try reducing this list modulo m for various m's until you find a pattern, and make a con
jecture explaining which primes have 3 as a quadratic residue. 

21.4. Finish the proof of Quadratic Reciprocity (Part II) for the other two cases: primes 
congruent to 1 modulo 8 and primes congruent to 5 modulo 8. 

21.5. Use the same ideas we used to verify Quadratic Reciprocity (Part II) to verify the 
following two assertions. 

(a) If p is congruent to 1 modulo 5, then 5 is a quadratic residue modulo p.

(b) If p is congruent to 2 modulo 5, then 5 is a nonresidue modulo p.
[Hint. Reduce the numbers 5, 10, 15, ... , � (p - 1) so that they lie in the range from
-� (p - 1) to � (p - 1) and check how many of them are negative.]

21.6. In Exercise 20.2 we defined A and B to be the sums of the residues, respectively 
nonresidues, modulo p. Part ( d) of that exercise asked you to find a condition on p which 
implies that A = B. Using the material in this section, prove that your criterion is correct. 
[Hint. The important fact you'll need is the condition for -1 to be a quadratic residue.] 



Chapter 22 

Quadratic Reciprocity 

Our current quest is to determine, for a given number a, exactly which primes p

have a as a quadratic residue. In the previous chapter we solved this problem for 

a = -1 and a = 2. In both cases we found that we could determine whether a is 

a quadratic residue modulo p by looking at p modulo m for some small m, more 

specifically form = 4 or m = 8.

Now we want to tackle the question of the Legendre symbol (�) for other values

of a. For example, suppose we want to compute (�). We can use the Quadratic

Residue Multiplication Rules (Chapter 20) to compute 

We already know how to find (�), so we're left with the problem of determining (�) 
and (�) .

In general, if we want to compute (�) for any number a, we can start by factor

ing a into a product of primes, say 

a= Q1 Q2 · · ·

Qr
· 

(It's okay if some of the Qi 's are the same.) Then the Quadratic Residue Multipli

cation Rules give 

(;) (�) (�) ... (�). 
The moral of this story: If we know how to compute (*) for primes Q, then we

know how to compute (�) for every a.1 Since nothing we have done so far tells us

1 Yet another instance of the principle that primes are the basic building blocks of number theory, 

so if you can solve a problem for primes, you're usually well on your way to solving it for all 

numbers. 
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anything about (�) (for fixed q and varying p ), the time has come2 to compile some 

data and use it to make some conjectures. The following table gives the value of 

the Legendre symbol (�) for all odd primes p, q < 37. 

p \q 3 5 7 11 13 17 19 23 29 31 37 

3 -1 1 -1 1 -1 1 -1 -1 1 1 

5 -1 -1 1 -1 -1 1 -1 1 1 -1 

7 -1 -1 1 -1 -1 -1 1 1 -1 1 

11 1 1 -1 -1 -1 -1 1 -1 1 1 

13 1 -1 -1 -1 1 -1 1 1 -1 -1 

17 -1 -1 -1 -1 1 1 -1 -1 -1 -1 

19 -1 1 1 1 -1 1 1 -1 -1 -1 

23 1 -1 -1 -1 1 -1 -1 1 1 -1 

29 -1 1 1 -1 1 -1 -1 1 -1 -1 

31 -1 1 1 -1 -1 -1 1 -1 -1 -1 

37 1 -1 1 1 -1 -1 -1 -1 -1 -1 

The Value of the Legendre Symbol (�) 

Before reading further, you should take some time to study this table and try to 

find some patterns. Don't worry if you don't immediately discover the answer; the 

most important pattern concealed in this table is somewhat subtle. But you will 

find that it is well worth the effort to uncover the design on your own, since you 

then share the thrill of discovery with Legendre and Gauss. 

Now that you've formulated your own conjectures, we'll examine the table 

together. We are going to compare the rows with the columns or, what amounts 

to the same thing, we are going to compare the entries when we reflect across the 

diagonal of the table. For example, the row with p = 5 reads 

q 3 5 7 11 13 17 19 23 29 31 37 

(�) -1 -1 1 -1 -1 1 -1 1 1 -1 

2"The time has come," the Walrus said, "to talk of many things, of shoes, and primes, and 
residues, and cabbages and kings." 
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Similarly, the column with q = 5 (turned sideways to save space) is 

p 3 5 7 11 13 17 1 9 23 29 31 37 
(�) -1 -1 1 -1 -1 1 -1 1 1 -1 

They match! So we might guess that 

G)=(k) 
for all primes p. Do you see how useful a rule like this would be? We are looking 

for a method to calculate the Legendre symbol (�), a difficult problem, but the 

Legendre symbol (�) is easy to compute, because it only depends on p modulo 5. 
In other words, we know that 

(!!_)={1 ifp lor4 (mod 5) , 5 -1 ifp 2 or3 (mod 5). 
So if our guess that (�) = (�) is correct, then we would know, for example, that 5 
is a nonresidue modulo 35 93, since 

Similarly, 

(35593) = (35;3) = G) = -1. 
(�5 ) = (3889 ) = (i) = 1 3889 5 5 ' 

so 5 should be a quadratic residue modulo 3889 ,  and sure enough we find that 5 29012 (mod 3889). 
Emboldened by this success, we might guess that 

for all primes p and q. Unfortunately, this isn't even true for the first row and 

column of the table. For example, 

G)=-1 and G) = 1. 
So sometimes (�) is equal to (%), and sometimes it is equal to - (%). The following 

table will help us find a rule explaining when they are the same and when they are 
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opposites. 

p \q 3 5 7 11 13 17 19 23 29 31 37 

3 \? * * \? \? * * \? * \? 

5 \? \? \? \? \? \? \? \? \? \? 

7 * \? * \? \? * * \? * \? 

11 * \? * \? \? * * \? * \? 

13 \? \? \? \? \? \? \? \? \? \? 

17 \? \? \? \? \? \? \? \? \? \? 

19 * \? * * \? \? * \? * \? 

23 * \? * * \? \? * \? * \? 

29 \? \? \? \? \? \? \? \? \? \? 

31 * \? * * \? \? * * \? \? 

37 \? \? \? \? \? \? \? \? \? \? 

Table with \? if (�) = (%) and * if (�) = - (%) 

Looking at this table, we can pick out the primes that have \?-filled rows and 

columns: 

p= 5,13,17,29,37. 

The primes whose rows and columns are not exactly the same (i.e., the rows and 

columns containing *'s) are 

p = 3, 7,11,19,23,31. 

With our previous experience, there is no mystery about these lists; the former 

consists of the primes that are congruent to 1 modulo 4, and the latter contains the 

primes that are congruent to 3 modulo 4. 
So our first conjecture might be that if p = 1 (mod 4) or if q = 1 (mod 4) 

then the rows and columns are the same. We can write this in terms of Legendre 

symbols. 

Conjecture: If p = 1(mod4) or q - 1 (mod 4), then a) = (�). 
What happens if both p and q are congruent to 3 modulo 4? Looking at the 

table, we find in every instance that (�) and (%) are opposites. So we are led to 

make a further guess. 
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Conjecture: If p = 3 (mod 4) and q = 3 (mod 4), then G) = -(�). 
These two conjectural relations form the heart of the Law of Quadratic Reciprocity. 

Theorem 22.1 (Law of Quadratic Reciprocity). Let p and q be distinct odd primes. 

Cl)={-� 

G) = {-� 

if p = 1 (mod 4), 

if p 3 (mod 4). 

if p = 1or7 (mod 8), 

ifp 3 or 5 (mod 8). 

if p - 1 (mod 4) or q - 1 (mod 4), 

if p 3 (mod 4) and q 3 (mod 4). 

We have proven the Law of Quadratic Reciprocity for ( �1) and (�). There are 

many different proofs of the relationship between (*) and (%), but none of them 

is easy. We will give a proof, due to Eisenstein, in the next chapter. Euler and 

Lagrange were the first to formulate the Law of Quadratic Reciprocity, but it re

mained for Gauss to give the first proof in his famous monograph Disquisitiones 
arithmeticae in 1801. Gauss discovered the law for himself when he was 19, and 

during his lifetime he found seven different proofs! Mathematicians during the 

nineteenth century subsequently formulated and proved Cubic and Quartic Reci

procity Laws, and these in tum were subsumed into the Class Field Theory devel

oped by David Hilbert, Emil Artin, and others from the 1890s through the 1920s 

and 1930s. During the 1960s and 1970s a number of mathematicians formulated a 

series of conjectures that vastly generalize Class Field Theory and that today go by 
the name of the Langlands Program. The fundamental theorem proved by Andrew 

Wiles in 1995 is a small piece of the Langlands Program, yet it sufficed to solve 

Fermat's 350-year-old "Last Theorem." 

Carl Friedrich Gauss (1777-1855) Carl Friedrich Gauss was one of the 

greatest mathematicians of all time, and arguably the finest number theorist 

to have ever lived. As a child, he was a mathematical prodigy whose feats 

impressed his family, friends, and teachers, and his mathematical talents only 

grew as he matured. His most influential work in number theory was pub

lished in 1801 under the title of Disquisitiones arithmeticae. It contains, 

among other things, the theory of quadratic reciprocity and the representation 

of numbers by binary forms. Much of the material in Gauss's Disquisitiones 
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was far ahead of its time and, as such, furnished paths for number theorists 

to follow during the subsequent century and a half. In addition to his work 

in number theory, Gauss made fundamental contributions to many other ar

eas of mathematics, including geometry and differential equations. He also 

made many discoveries in physics and astronomy, including a method for 

computing orbits that he used to compute the position of the newly discov

ered asteroid Ceres in 1801. He published major papers in areas as diverse 

as crystallography, optics, and the physics of fluids, and he invented an elec

tromagnetic telegraph with Wilhelm Weber in 1833. He published 155 titles 

during his lifetime, but his life's work was so prodigious that his Collected 
Works appeared during the period 1863 to 1933. 
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The Law of Quadratic Reciprocity is not only a beautiful and subtle theoreti

cal statement about numbers, it is also a practical tool for determining whether a 

number is a quadratic residue. Essentially, it lets us flip the Legendre symbol (�) 
and replace it by ± (�). Then we can reduce p modulo q and repeat the process. 

This leads to Legendre symbols with smaller and smaller entries, so eventually we 

arrive at Legendre symbols that we can compute. Here's an example with detailed 

justification for each step. 

G3�) = (1�7) (1�7) 
(1�7) 

=1 

Quadratic Residue Multiplication Rule, 

Quadratic Reciprocity says (i�7) = 1, 
since 137 1 (mod 8), 

Quadratic Reciprocity and 137 _ 1 (mod 4), 

reducing 13 7 modulo 7, 
since 4 = 22 is certainly a square. 

Thus, 14 is a quadratic residue modulo 137. In fact, the solutions to the congruence 

x2 14 (mod 137) are x 39 (mod 137) and x 98 (mod 137). 
Here's a second example that illustrates how the sign can change back and forth 
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a number of times. 

u:g) = (1�9) u:g) 
= (1 ;9) x ( -1) x (117:) 
= (�) x (-1) x U1) 
=lx(-l)x (i31) 
=lx(-l)x(-l)x en 
= 1 x (-1) x (-1) x (�) 
= 1 x (-1) x (-1) x (-1) 
= -1. 

So 55 is a nonresidue modulo 179. 

since 5 = 1 (mod 4) and 11_179 _ 3 (mod 4), 

since 179 _ 4 (mod 5) and 179 = 3 (mod 11), 
since 4 = 22 is a square, 

since 3 = 11 3 (mod 4), 

since 11 2 (mod 3), 
since 2 is a nonresidue mod 3, 
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There is often more than one way to use Quadratic Reciprocity to evaluate a 

given Legendre symbol (:) , for example, by using the equality (%) = (p�q). Thus 

we can compute (���) as 

(299) ( 13 ) ( 23 ) (397) (397) ( 7 )  ( 6) 397 = 397 397 = "13 23 = 13 23 
= en G3) G3) = ( n x 1 x - en = -1 x -G) = -1, 

or we can compute it as 

(299) (-98) (-1) ( 2 ) ( 7 ) 2 

2 397 = 397 = 397 397 397 = 1 x (-l) x (±l) = -1. 
Of course, regardless of the path taken, the final destination is always the same. 

The Law of Quadratic Reciprocity furnishes an extremely efficient way to com

pute the Legendre symbol (:) , even for very large values of a and p. In fact, the 

number of steps to compute (:) is more or less equal to the number of digits in p, 

so it is possible to evaluate Legendre symbols for numbers with hundreds of digits. 
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We won't spend the time to do an example that is that large, but are content with 

the following modest example. 

(37603) = ( 31 ) ( 1213 ) = -(48611) (48611) 48611 48611 48611 31 1213 
= -G1) C��3) = (331) c;13) C��3) 
= G) (12;3) (1��3) = (D (i�) = 1 

Hence, 37603 is a quadratic residue modulo 48611. 
The hardest part of computing (�) lies not in the use of the Law of Quadratic 

Reciprocity, but rather in the necessity of factoring the number a before applying 

the law. Thus, in our example, it takes some work to recognize that 37603 factors as 31 · 1213, and if a has hundreds of digits, it may be virtually impossible to factor a. 

Surprisingly, it is possible to evaluate (�) without doing any difficult factorizations. 

The idea is to use the Law of Quadratic Reciprocity to flip the Legendre symbol (�) 
for any positive odd value of a, completely ignoring the question of whether a is 

prime. As usual, if both a and p are congruent to 3 modulo 4, then you must put in 

a minus sign. More generally, we can assign a value to the Legendre symbol (%) 
for any integers a and b provided that b is positive and odd. (This generalized 

Legendre symbol is called a Jacobi symbol.) This is done by first factoring b into a 

product of primes, b = P1P2 · · · Pr ,  and then defining (%) as a product of Legendre 

symbols, 

We can evaluate the Legendre or Jacobi symbol by repeatedly applying the 

following Generalized Law of Quadratic Reciprocity. 

Theorem 22.2 (Generalized Law of Quadratic Reciprocity). Let a and b be odd 

positive integers. 

Cl)={-� 

G) = {-� 

if b - 1 (mod 4), 
if b = 3 (mod 4). 
if b - 1or7 (mod 8), 
if b _ 3 or 5 (mod 8). 
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(:) = 

a 

b 

if a = 1 (mod 4) orb = 1 (mod 4), b 

if a = b = 3 (mod 4). 
a 

Amazingly enough, if you use these rules, the multiplication formula (a1ba2) = 

(ab1) (at), and the fact that (%) only depends on the value of a modulo b, you'll 

end up with the correct value for the Legendre symbol. The only caveat, and it is 

extremely important, is that you're only allowed to flip (%) for odd positive values 

of a. If a is even, then you must first factor off a power of (%) , and if it is negative, 

then you must factor off the ( b 1) . 
We illustrate this new and improved Quadratic Reciprocity Law by recomput

ing our earlier example. 

(37603) (48611) (11008) (28. 43) ( 43 ) 48611 = - 37603 = - 37603 = - 37603 = - 37603 
= (37453°3) = G!) = GD = G1) = 1 

Although this may not look much shorter than before, it actually required much 

less work, because we didn't need to find the prime factorization of 37603. 
We have just verified that 37603 is a quadratic residue modulo 48611, so the 

congruence 

x2 = 37603 (mod 48611) 
has a solution (in fact, two solutions). Unfortunately, nothing we have done helps 

us to find the solutions, which turn out to be 

x _ 17173 (mod 48611) and x _ 31 438 (mod 48611). 
However, there do exist more advanced methods that actually solve the congruence 

x2 = a (mod p). And for certain special sorts of primes, it is possible to write 

down the solutions explicitly; see Exercises 22.7 and 22.8. 
We conclude this section by proving the first part of the Generalized Law of 

Quadratic Reciprocity (Theorem 22.2), and we leave the second and third parts for 

you to do (Exercise 22.6). So we are given an odd positive integer b and we want 

to compute ( b 1) . When we factor b as a product of primes, some of the factors are 

congruent to 1 modulo 4 and some of them are congruent to 3 modulo 4, say 

b = P1P2 · · · Prq1q2 · · · qs 

We observe that 

with Pi = 1 (mod 4) and qj = 3 (mod 4). 
b _ {1(mod4) 3 (mod 4) ifs is even, 

ifs is odd. 
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From the definition of the Jacobi symbol we have 

C1) (v:) (p:) · · · ( p:) C1
1) C21) . .  · 

( qs1) . 

The original version of Quadratic Reciprocity (Theorem 22.1) says that ( ;i1) = 1 
and ( �j1) = -1, so 

(bl)= (-1)' = { �1 
ifs is even, 

ifs is odd. 

Comparing this with our earlier description of b (mod 4), we have proven that 

b-1 (mod4) = sis even = (bl)= 1, 

b _ 3 (mod 4) = s is odd = ( b 1) = -1. 

This is the desired result. 

Exercises 
22.1. Use the Law of Quadratic Reciprocity to compute the following Legendre symbols. 

(a) (18051) (b) (52:1) (c) (11908\) (d) (����:) 
22.2. Does the congruence 

x2 - 3x - 1 0 (mod 31957) 
have any solutions? [Hint. Use the quadratic formula to find out what number you need to 

take the square root of modulo the prime 31957.] 
22.3. Show that there are infinitely many primes congruent to 1 modulo 3. [Hint. See the 

proof of the "1 (Modulo 4) Theorem" in Chapter 21, use A = (2P1P2 ···Pr )2 + 3, and try 

to pick out a good prime dividing A. ] 

22.4. Let p be a prime number (p =/= 2 and p =/= 5), and let A be some given number. 

Suppose that p divides the number A 2 - 5 .  Show that p must be congruent to either 1 or 4 

modulo 5. 

22.5. P.. Write a program that uses Quadratic Reciprocity to compute the Legendre sym

bol (�) or, more generally, the Jacobi symbol (%). 
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22.6. (a) Prove the second part of the Generalized Law of Quadratic Reciprocity (Theo-

rem 22.2); that is, prove that (�) equals 1 if b 1 or 7 modulo 8 and equals -1 if

b 3 or 5 modulo 8. 
(b) Prove the third part of the Generalized Law of Quadratic Reciprocity (Theorem 22.2); 

that is, prove that (%) equals (�) if a or b is congruent to 1 modulo 4 and equals - (�) 
if both a and b are congruent to 3 modulo 4. 

22. 7. Let p be a prime satisfying p 3 (mod 4) and suppose that a is a quadratic residue

modulo p. 
(a) Show that x = aCv+l)/4 is a solution to the congruence

x2 a (mod p). 

This gives an explicit way to find square roots modulo p for primes congruent to 3

modulo4. 

(b) Find a solution to the congruence x2 = 7 (mod 787). (Your answer should lie be

tween 1 and 786.) 

22.8. Let p be a prime satisfying p 5 (mod 8) and suppose that a is a quadratic residue

modulo p. 
(a) Show that one of the values 

x = aCv+3)/s or x = 2a · (4a)Cv-5)/s

is a solution to the congruence 

x2 a (mod p). 

This gives an explicit way to find square roots modulo p for primes congruent to 5

modulo 8. 

(b) Find a solution to the congruence x2 5 (mod 541). (Give an answer lying be-

tween 1and540.) 

(c) Find a solution to the congruence x2 = 13 (mod 653). (Give an answer lying be

tween 1 and 65 2.) 

22.9. � Let p be a prime that is congruent to 5 modulo 8. Write a program to solve the

congruence 

x2 a (mod p) 

using the method described in the previous exercise and successive squaring. The output 

should be a solution satisfying 0 ::::; x < p. Be sure to check that a is a quadratic residue,

and return an error message if it is not. Use your program to solve the congruences 

x2 = 17 (mod 1021) , x2 = 23 (mod 1021) , x2 = 31 (mod 1021) .

22.10. If am-l ¢ 1 (mod m) , then Fermat's Little Theorem tells us that mis composite.

On the other hand, even if 

am-l = 1 (mod m) 
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for some (or all) a's satisfying gcd(a, m) = 1, we cannot conclude that mis prime. This
exercise describes a way to use Quadratic Reciprocity to check if a number is probably 
prime. (You might compare this method with the Rabin-Miller test described in Chap
ter 19.) 

(a) Euler's criterion says that if pis prime then 

a(p-l)/2 - (;) (mod p).

Use successive squaring to compute 11 864 (mod 1 729) and use Quadratic Recipro
city to compute (1 

g9). 

Do they agree? What can you conclude concerning the
possible primality of 1729? 

(b) Use successive squaring to compute the quantities 

2(1293337-l)/2 (mod 1293337) and 21293336 (mod 1293337).

What can you conclude concerning the possible primality of 1293337?



Chapter 23 

Proof of Quadratic Reciprocity 

The Law of Quadratic Reciprocity (Theorem 22.1) has three parts. The first part 

tells us when -1 is a square modulo p, the second part tells us when 2 is a square

modulo p, and the third part relates p being a square modulo q to q being a square

modulo p. We already proved the first two parts of quadratic reciprocity in Chap

ter 21. The third part, which says that 

(�) (;) = (-1(;'-q;l 

for odd primes p and q, is more difficult to prove. In this chapter we build upon

the ideas used to prove the second part to give Eisenstein's proof of the third part. 

However, if you want to skip the proof for now, you can proceed to the next chap

ter and return here whenever you feel ready to complete the proof of Quadratic 

Reciprocity. 

Eisenstein's proof uses a criterion of Gauss that we already discussed in Chap

ter 21 when we computed (�) . Let p be an odd prime, let a be any integer not

divisible by p, and for convenience, let

We consider the list of numbers 

p-l P= .
2 

a, 2a, 3a, ... , Pa, 

and we reduce them modulo p into the range from -P to P. Some of the reduced

values will be positive and some of them will be negative. Let (number of integers in the list a, 2a, 3a, ... , Pa that be-)
µ(a, p) = come negative when the integers in the list are reduced . 

modulo p into the interval from -P to P 
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We illustrate by computing Gauss'sµ value for p = 13 and a = 7, so P = 13;1 
= 6. We start with the six numbers 

1·7 
' 

2·7 
' 

3.7 
' 

4.7 
' 

5.7 
' 

6·7 

and reduce them modulo 13 to get numbers between -6 and 6. This yields 

1 · 7 = 7 _ -6 (mod 13) 

2 · 7 = 1 4  = 1 (mod 13) 

3 · 7 = 21 -5 (mod 13) 

4 · 7 = 28 _ 2 (mod 13) 

5 · 7 = 35 - -4 (mod 13) 

6 · 7 = 42 3 (mod 13) 

Three of the residues are negative, so µ(7 , 13) = 3. 
Gauss's Criterion, which we now state and prove, says thatµ( a, p) can be used 

to determine if a is a square modulo p. (We proved Gauss's Criterion for a= 2 in 
Chapter 21.) 

Theorem 23.1 (Gauss's Criterion). Let p be an odd prime, let a be an integer that is 
not divisible by p, and letµ( a, p) be the number given by the formula on page 171. 

Then 

(;) = Hlµ(a,v)_ 

Before starting the proof of Gauss's Criterion, we first prove a lemma that 
describes what happens when we reduce a,  2a, 3a, ... , Pa modulo p. 

Lemma 23.2. When the numbers a, 2a, 3a, ... , Pa are reduced modulo p into the 
range from -P to P, the reduced values are ± 1,  ... , ±P in some order, with each 
number appearing once with either a plus sign or a minus sign. 

Proof of Lemma 23.2. We write each multiple ka as 

with -P < rk < P. 

Suppose that two of the rk values are either the same or negatives of each another, 
say ri = erj withe = ±1. Then 

sop divides ( i -ej)a. But pis prime and a is not divisible by p, so we conclude 
that p divides i -e j. However, 

Ji -ejJ < JiJ + JejJ = i + j < P + P = p -1. 
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So the only way for i - ej to be divisible by p is to have i - ej = 0. Since e = ±1 
and i and j are positive, it follows that i = j. 

We have thus shown that the numbers ri, r2, ... , r p are all different, even if 

we change their signs. Since they are all between -P and P, and none of them is 

zero, it follows that each of the numbers 1, 2, . . .  , P, with either a plus or a minus 

sign, appears exactly once in the list of numbers ri, r2, ... , r p. D 

We now use the lemma to prove Gauss's Criterion. Later in this section the 

lemma will be used a second time to prove an important formula needed for Eisen

stein's proof of Quadratic Reciprocity. 

Proof of Gauss's Criterion (Theorem 2 3. 1). We start by taking the list of numbers 

a, 2a, . . .  , Pa and multiplying them. The product equals 

a· 2a · 3a · · ·Pa = aP (l · 2 · 3 · · · P) = aP · P!. 

On the other hand, Lemma 23 .2 tells us that 

a· 2a · 3a ···Pa= (±1) · (±2) · (±3) · · · (±P) (mod p) , 

where the number of minus signs is µ(a,p), because that's exactly how µ(a,p) is 

defined. So 

a· 2a · 3a ···Pa= (-l)µ(a,p) · 1 · 2 · 3 · · · P (mod p) 

= (-l)µ(a,p)p! (modp). (**) 

Comparing the formula ( *) to the congruence ( ** ), we see that 

ap P! (-l)µ(a,p) P! (mod p) . 

The number P! is not divisible by p, so we may cancel it from both sides of the 

congruence to get 

ap = (-l)µ(a,p) (modp). 

Finally, we observe that Euler's Criterion (Theorem 21.1) says that 

aP = �) (mod p) , 

(remember that P = P; 1 ), so 

(;) - (-l)"(a,p) (mod p) . 

This says that (�) -( -1 )µ(a,p) is divisible by p. But the quantity (�) - ( -1 )µ(a,p) 
equals either -2, 0, or 2, while p > 3, so we conclude that (�) - (-1 )µ(a,p) = 0. 

This completes the proof of Gauss's Criterion. D 
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Eisenstein's proof of Quadratic Reciprocity employs a useful gadget called the 
floor function or greatest integer function. For a real number t, it is denoted l t J 
and is defined by 

l t J = (largest integer n satisfying n < t). 

For example, 

l5.7J = 5, l-1.3J = -2, l 
2
: J = 3, l4J = 4. 

We now prove an identity of Eisenstein that lies at the heart of his proof of quadratic 
identity. 

Lemma 23.3. Let p be an odd prime, let P = P; 1, let a be an odd integer that is 
not divisible by p, and letµ( a, p) be the quantity defined on page 171 that appears 
in Gauss's criterion. Then 

t l
ka
J µ(a,p) (mod 2). 

k=l 
p 

Before proving the lemma, we illustrate it with a 
P = 6, so the sum is 

7 and p 

tl�J=l�J+l�J+l�J+l:J+l:J+�:J k=l =0 + 1 + 1 + 2 + 2 + 3 = 9. 

13. Then 

Earlier in this chapter we computed µ(7, 13) = 3. Notice that the sum is not equal 
to µ(7, 13), but they are congruent modulo 2, since they are both odd. 

Proof of Lemma 23.3. Just as in the proof of Lemma 23.2, we write each multi
ple ka as ka = qkp + rk with -P < rk < P. 

We next divide by p to obtain 

ka rk 1 rk 1 p = qk + p with 
-2 < p < 2. 

Taking the floor of both sides, we see that 

l
ka
J { qk if rk > 0, 

P = 
qk - 1 if rk < 0. 



[Chap. 23] Proof of Quadratic Reciprocity 

So if we add the values l �a J fork = 1, 2, ... , P, we get 

� l ka J = 

� _ (nm�ber of 
.
k such that) 

� � Qk rk 1s negative k=l p k=l 
p 

= L:Qk - µ(a,p). 
k=l 
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Our final task is to compute the sum Q1 + · · · + Qk, but we only need to compute 
it modulo 2. Note that if we reduce the formula 

modulo 2 and use the fact that both a and p are odd, we get 

Summing, we find that 

k Qk + rk (mod 2). 

p p p 

Lk Lqk+Lrk(mod2). 
k=l k=l k=l 

However, Lemma 23 .2 tells us that the numbers ri, r2, ... , r p are equal to the 
numbers ± 1, ... , ±P in some order, with each number from 1 to P appearing 
once with either a plus sign or a minus sign. Since we are working modulo 2, the 
signs are irrelevant, so we see that 

p 

L rk - 1+2 + · · · + P (mod 2). 
k=l 

In other words, the sums� k and� rk appearing in the congruence (:j:) are con
gruent modulo 2, so we conclude that 

p 

LQk - 0 (mod 2). 
k=l 

Now reducing equation (t) modulo 2, we find that 

p 

lk J 
p 

L 
p
a 

= L Qk - µ(a,p) - µ(a,p) (mod 2), 
k=l k=l 

which is exactly what we are trying to prove. D 
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Proof of Quadratic Reciprocity. We now have all of the tools that we need to prove 
Quadratic Reciprocity. The proof uses some geometry. Let p and q be odd primes, 
and let 

p 
= _p_-_1 

2 
q-1 

and Q = 
2 

. 

We consider the triangle T ( q, p) in the xy-plane whose vertices are the points 

(0, 0), (�, 0), and(�, � ), as illustrated in Figure 23.1. We are going to count the 
number of points with integer coordinates that lie inside the triangle T ( q, p). For 
example, the triangle in Figure 23.l contains 19 integer points, since we only count 
the points that are strictly inside the triangle, not the ones lying on the bottom line 
segment. 

(�,�) 

(0, 0) (�,o) 

Figure 23 .1: The Triangle T ( q, p) 

We count the integer points in T(q,p) by counting the number of such points 
with x = 1, then the number with x = 2, and so on. The hypotenuse of the 
triangle T ( q, p) lies on the line 

q 
y= -x, 

p 

so for x = 1 we get l � J points, for x = 2 we get l �q J points, and so on. In other 
words, 

(number of points with integer ) 
= 

� l kq j 
coordinates in triangle T ( q, p) D p 

· 

k=l 

The left-hand triangle in Figure 23.2 illustrates this formula with q = 7 and 
p = 13. Counting the integer points in each column of the picture, the number of 

integer points in triangle T(7, 13) is 
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(13 1) 
2 '2 

• • • 

(o,o) (�3,o) 
The triangle T(7, 13) 

(0,0) 
The triangle T'(13, 7) 

Figure 23.2: Counting Integer Points in Triangles 
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(13 1) 
2 '2 

Returning now to the general case, we next count the number of integer points 

in the triangle T' (p, q) whose vertices are ( 0, 0), ( 0, �), and ( �, �). The triangle 

T' (13, 7) is illustrated in the right-hand side of Figure 23.2. We count the number 

of integer points in T' (p, q) by counting them horizontally, so first we count the 

number of points with y = 1, then the number of points with y = 2, and so on. 

Repeating our earlier argument, we find that 

(number of points with integer ) 
= 

� l 
k
p J coordinates in triangle T' (p, q) L..t q · 

k=l 

For example, the number of integer points in the triangle T'(13, 7) illustrated in 

Figure 23.2, counted horizontally row-by-row, is 

l 1
: J + 

l 2
: J + 

l 3
: J = 1

+
3 
+ 5 

= 

9. 

Comparing the formulas for the number of integer points in the triangles T ( q, p) 
and T'(p, q) to the formula in Lemma 23.3, we find that 

(number of ) (number of ) 
integer points 

+ 
integer points 

in T'(p, q) in T(q, p) 

Q p 

= L lkpj + L lkqj 
k=l 

q 
k=l 

p 

µ(p, q) 
+ 

µ(q, p) (mod 2). 

The end of the proof is simple, but clever. Consider the two triangles T ( q, p) 
and T'(p, q). They fit together to form a rectangle with vertices (0, 0), (�, 0), 
(0, �), and (�, �), as illustrated in Figure 23.3. The number of integer points in 

the rectangle is easy to compute. The rectangle contains l � J columns of integer 
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(O,�) (�,�) 

T'(p, q) T'(p, q) 
u 

T(q,p) T(q,p) 

(0,0) (�, 0) 
Figure 23.3: Forming a rectangle from T(q,p) and T'(p, q) 

points, and each column contains l � J integer points, so 

(number of ) (number of ) 
integer points + integer points = 

in T'(p, q) in T(q,p) 

(number of integer points ) 
in the rectangle with vertices 

( 0, 0), ( � , 0), ( 0, �), and ( � , �) 

l�J . l%J 
p-1 q-1 

2 2 
[We should also note that the only integer point on the diagonal of the rectangle is 

the point ( 0, 0), since points on the diagonal lie on the line y = � x, and the integer 

points on this line all have the form (kp, kq) for some integer k.] 
Combining this formula with our earlier formula for the sum of the number of 

integer points in the two triangles, we see that 

p-1 q-1 
µ(q,p) + µ(p, q) - 2 

· 

2 (mod 2). 

All that remains is to use Gauss's Criterion (Theorem 23 .1) to compute 

(�) (�) = (-l)µ(p,q) · (-I)µ(q,p) = (-l)µ(p,q)+µ(q,p) = (-1) •;'. ';' . 

This completes our proof of the third part of Quadratic Reciprocity. 

Exercises 

23.1. Compute the following values. 

(a) l-1J (b) lV23J (c) l7r2J (d) lJ73J m 

D 
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23.2. This exercise asks you to explore some properties of the function

f (x) = l 2x J - 2 l x J, 
where x is allowed to be any real number. 

(a) If n is an integer, how are the values off (x) and f (x + n) related?

179 

(b) Compute the value of f ( x) for several values of x between 0 and 1 and make a

conjecture about the value off ( x). 
(c) Prove your conjecture from (b).

23.3. This exercise asks you to explore some properties of the function

g(x) = lxJ + lx+ �J. 
where xis allowed to be any real number. 

(a) Compute the following values of g(x): 

g(O), g(0.25), g(0.5), g(l), g(2), g(2.5), g(2.499). 

(b) Using your results from (a), make a conjecture that g(x) = lkxj for a particular

value of k. 
(c) Prove that your conjecture in (b) is correct.

(d) Find and prove a formula for the function

g( x) = l x J + l x + � J + l x + � J .
( e) More generally, fix an integer N > 1 and find and prove a formula for the function

g(x) = lxJ + lx + � J + lx + � J + · · .  + + lx + N; 1 J. 
23.4. Let p be an odd prime, let P = P; 1 , and let a be an even integer that is not divisible

byp.

(a) Show that

t lkaJ p
2

; 
1 + µ (a,p) (mod 2).

k=l p 

[Hint. When a is odd, we proved a similar congruence in Lemma 23.3.]

(b) In particular, take a = 2 and use (a) and Gauss's Criterion (Theorem 23.1) to show

that 

G) = {-l)(p'-1)/8.

[Hint. What is the value of l 2k/p J when 1 :::; k :::; P?]
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23.5. Let a and b be positive integers and let T be the triangle whose vertices are (0, 0), 
(a, 0), and (a, b). Consider the following three quantities: 

A = the area inside the triangle T, 

N = the number of integer points strictly inside the triangle T, 

B = the number of integer points on the edges of the triangle T.

For example, if a= 6 and b = 2, then we have the picture 

so 
6·2 

A= - =6 
2 ' N=2 ' B = 10. 

(a) Draw a picture for the case that a= 5 and b = 3, and use it to compute the values of 

A, N, and B. Then compute A - N - �B. 
(b) Repeat (a) with a= 6 and b = 4. 

(c) Based on your data from (a) and (b), make a conjecture relating A, N, and B. 
(d) Prove that your conjecture is correct. [Hint. Use two copies of the triangle to form a 

rectangle.] 



Chapter 24 

Which Primes Are Sums 

of Two Squares? 

Although our exploration of congruences has been interesting and fun, there is no 

doubt that the fundamental questions in number theory are questions about actual 

natural numbers. A congruence 

A B (mod M) 

is all well and good; it tells you that the difference A - B is a multiple of M, but 

it can't compare to an actual equality 

A=B. 

One way to think of congruences is that they are approximations to true equalities. 

Such approximations are not to be despised. They have a certain intrinsic interest 

of their own and, furthermore, they can often be used as tools to construct true 

equalities. This is the path we take in this chapter, where we use the Law of Qua

dratic Reciprocity, which is a theorem about congruences, as a tool to construct 

equalities between whole numbers. 

The question we address is as follows: 

Which numbers can be written as sums of two squares? 

For example, 5, 10, and 65 are sums of two squares, since 

and 

On the other hand, the numbers 3, 19, and 154 cannot be written as sums of two 

squares. To see this for 19, for example, we just need to check that none of the 
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differences 

19 - 12 
= 18, 19 - 22 

= 15, 19 - 32 
= 10, or 19 - 42 = 3 

182 

is a square. In general, to check if a given number m is a sum of two squares, list 

the numbers 

until either you get a square or the numbers become negative. 1 

As usual, we begin with a short table and look for patterns. 

1 = 12 + 02 

2=12+12 

3 NO 

4 = 02 + 22 

5 = 12 + 22 

6 NO 

7 NO 

8 = 22 + 22 

9 = 02 + 32 

10 = 12 + 32 

11 NO 

12 NO 

13 = 22 + 32 

14 NO 

15 NO 

16 = 02 + 42 

17 =12+42 

18 = 32 + 32 

19 NO 

20 = 22 + 42 

21 NO 31 NO 

22 NO 32 = 42 + 42 

23 NO 33 NO 

24 NO 34 = 32 + 52 

25 = 32 + 42 35 NO 

26 = 12 + 52 36 = 02 + 62 

27 NO 37 = 12 + 62 

28 NO 38 NO 

29 = 22 + 52 39 NO 

30 NO 40 = 22 + 62 

Numbers That Are Sums of Two Squares 

41 = 42 + 52 

42 NO 

43 NO 

44 NO 

45 = 32 + 62 

46 NO 

47 NO 

48 NO 

49 = 02 + 72 

50 = 52 + 52 

From the table, we make a list of the numbers that are and are not sums of two 

squares. 

Numbers that are 1,2,4,5,8,9, 10, 13, 16, 17, 18,20,25,26, 
sums of two squares 29,32,34,36,37,40,41,45,49,50 

Numbers that are not 3,6,7, 11, 12, 14, 15, 19,21,22,23,24,27, 
sums of two squares 28,30,31,33,35,38,39,42,43,44,46,47,48 

Can you spot any patterns? 

One immediate observation is that no number that is congruent to 3 modulo 4 
can be written as a sum of two squares. Looking back at the first two columns of the 

table, we might have also guessed that if m - 1 (mod 4) then m is a sum of two 

squares. But this guess is not correct, since 21 is not a sum of two squares. Another 

exception is 33. However, both 21 and 33 are composite numbers, 21 = 3 · 7 and 

33 = 3 · 11. If we only look at prime numbers, we see that every prime in our table 

satisfying 

p = 1(mod4) 

1 Actually, it's only necessary to check if m - a2 is a square for all a's between 0 and Vm/2. 
Do you see why this is enough? 
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is indeed a sum of two squares. This observation reminds us of the "prime di

rective" in number theoretic investigations: always start by investigating prime 

numbers. There are two reasons to do this. First, patterns are usually easier to spot 

for primes. Second, patterns for primes can often be used to deduce patterns for all 

numbers, since the Fundamental Theorem of Arithmetic (Chapter 7) says that the 

primes are the basic building blocks of all numbers. 

Now that we've decided to concentrate on primes, let's compile a more exten-

sive list of primes and see which can be written as sums of two squares. 

2 = 12 + 12 31 NO 73 = 32 + 82 127 NO 179 NO 

3 NO 37 = 12 + 62 79 NO 131 NO 181 = 92 + 102 
5 =12+22 41 =42+52 83 NO 137 =42+112 191 NO 

7 NO 43 NO 89 = 52 + 82 139 NO 193 = 72 + 122 
11 NO 47 NO 97 = 42 + 92 149 = 72 + 102 197 = 12 + 142 
13 = 22 + 32 53 = 22 + 72 101 = 12 + 102 151 NO 199 NO 

17 =12+42 59 NO 103 NO 157 =62+112 211 NO 

19 NO 61 = 52 + 62 107 NO 163 NO 223 NO 

23 NO 67 NO 109 = 32 + 102 167 NO 227 NO 

29 = 22 + 52 71 NO 113 = 72 + 82 173 = 22 + 132 229 = 22 + 152 

Primes That Are Sums of Two Squares 

This gives the following two lists. 

Primes that are 2,5, 13, 17,29,37,41,53,61, 73,89,97, 101, 

sums of two squares 109, 113, 137, 149, 157, 173, 181, 193, 197,229 

Primes that are 3, 7, 11, 19,23,31,43,47,59,67, 71, 79,83, 

not sums of 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 

two squares 199,211,223,227 

The right conjecture is obvious. Primes that are congruent to 1 modulo 4 seem to 

be sums of two squares, and primes that are congruent to 3 modulo 4 seem not to 

be. (We're ignoring 2, which is a sum of two squares, but occupies a somewhat 

anomalous position.) The rest of this chapter is devoted to a discussion and proof 

of this conjecture. 

Theorem 24.1 (Sum of Two Squares Theorem for Primes). Let p be a prime. Then 

p is a sum of two squares exactly when 

p _ 1(mod4) (o r p = 2). 

The Sum of Two Squares Theorem really consists of two statements. 

Statement 1. If p is a sum of two squares, then p _ 1 (mod 4). 

Statement 2. If p _ 1 (mod 4), then p is a sum of two squares. 
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One of these statements is fairly easy to verify, while the other is quite difficult. 

Can you guess which is which without actually trying to prove either of them? 

This is not an idle or frivolous question. Before trying to verify a mathematical 

statement, it helps to have some idea of how difficult the proof is likely to be, or, 

as a mathematician would say, to know the depth of the statement. The proof of a 

deep theorem is likely to require stronger tools and more effort than the proof of 

a "shallower" theorem, just as it requires specialized machinery and great effort to 

build a skyscraper, while hammer and nails suffice to construct a birdhouse. 

So my question to you is "Which of the statements 1 and 2 is deeper?" Intu

itively, a statement is deep if it starts with an easy assertion and uses it to prove a 

difficult assertion. Statements 1 and 2 deal with the following two assertions: 

Assertion A. p is a sum of two squares. 

Assertion B. p = 1 (mod 4). 

Clearly, B is an easy assertion since for any given prime number p, it is easy to 

check whether it is true. Assertion A, on the other hand, is more difficult, since it 

can take a lot of work to check whether a given prime p is a sum of two squares. 

Thus, statement 1 says that if the deep assertion A is true, then so is the easy asser

tion B. This suggests that statement 1 won't be too difficult to prove. Statement 2 

says that if the easy assertion B is true, then the deep assertion A is also true. This 

suggests that a proof of statement 2 is likely to be difficult. 

Now that we know that statement 1 should be easy to prove, let's prove it. We 

are told that the prime p is a sum of two squares, say 

We also know that p is odd, so one of a and b must be odd and the other one must 

be even. Switching them if necessary, we may assume that a is odd and b is even, 

say 

a= 2n + 1 and b= 2m. 

Then 

p = a2 + b2 = (2n + 1)2 + (2m)2 = 4n2 + 4n + 1+4m2 
_ 1 (mod 4), 

which is exactly what we were trying to prove. 

Having given this very easy proof of statement 1, I want to show you a more 

complicated proof. Why would we ever want to use a complicated proof in place 

of an easy one? One answer is that frequently the more complicated argument can 

be applied in situations where the simple ideas do not work. 
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Our easy proof was to take the given formula p = a2 + b2, reduce it modulo 4, 
and deduce something about p modulo 4. That's a very natural way to proceed. For 

our new proof, we reduce the formula modulo p. This gives 

0 = a2 + b2 (mod p), so - a2 
= b2 (mod p). 

Next we take the Legendre symbol of both sides. 

Thus, -1 is a quadratic residue modulo p, so the Law of Quadratic Reciprocity 

(Chapter 22) tells us that p 1 (mod 4). This second proof is especially amusing 

because we reduce modulo p to get information modulo 4. 
The proof of statement 2, that every prime p = 1 (mod 4) can be written as 

a sum of two squares, is more difficult. The proof we give is based on Fermat's 

famous Method of Descent and in this form is essentially due to Euler. We start by 

describing the basic idea of Fermat's descent method, since once you understand 

the concept, the details become much less fearsome. 

We assume that p = 1 (mod 4), and we want to write p as a sum of two 

squares. Rather than immediately trying to write p = a2 + b2, let's tackle the less 

onerous task of writing some multiple of p as a sum of two squares. For example, 

Quadratic Reciprocity tells us that x2 
_ -1 (mod p) has a solution, say x = A, 

and then A2 + 12 is a multiple of p. So we begin with the knowledge that 

A2+B2=Mp 

for some integers A, B, and M. If M = 1, then we're done, so we suppose that 

M>2. 

Fermat's brilliant idea is to use the numbers A, B, and M to find new inte

gers a, b, and m with 

a2 + b2 =mp and m<M- 1. 

Of course, if m = 1, then we're done. And if m > 2, then we can apply Fermat's 

Descent Procedure again starting with a, b, and m to find a yet smaller multiple 

of p that is a sum of two squares. Continuing repeatedly in this fashion, we must 

eventually end up with p itself written as a sum of two squares. 
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This description has omitted one "minor" detail: how to use the known num

bers A, B, and M to produce the new numbers a, b, and m. Before describing 

this crucial piece of the proof, we briefly digress to look at a beautiful (and useful) 

identity. 

The identity says that if two numbers that are sums of two squares are multi

plied together, then the product is also a sum of two squares. 

(u2 + v2)(A2 + B2) = (uA + vB)2 + (vA- uB)2 . 

There is no difficulty in verifying that this identity is correct once it has been written 

down. (Discovering it in the first place is another matter, which we discuss at the 

end of this chapter.) Thus, multiplying out the right-hand side, we find that 

(uA + vB)2 + (vA - uB)2 

= (u2 A2 + 2uAvB + v2 B2) + (v2 A2 - 2vAuB + u2 B2) 

= u2 A2 + v2 B2 + v2 A2 + u2 B2 

= (u2 + v2)(A2 + B2). 

We are now ready to describe Fermat's Descent Procedure for writing any 

pnme 

p = 1(mod4) 

as a sum of two squares. As explained above, the idea is to begin with some 

multiple Mp that is a sum of two squares and, by some clever manipulations, find 

a smaller multiple that is also a sum of two squares. To help you understand the 

various steps, we do the example 

a2 + b2 = 881 

side by side with the general procedure. The Descent Procedure, in all its glory, is 

on display in the table on page 187. Be sure to go over the procedure step by step 

before proceeding with the text. 

The Descent Procedure described on page 187 reduced the initial equation 

38 72 + 1 2 = 1 70 . 881 

to the smaller multiple 

1072 + 22 = 13. 881 

of 881. To complete the task of writing 881 as a sum of two squares, we repeat the 
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I Descent Procedure I 
p = 881 

Write 

3872 + 12 = 170. 881 
with 170 < 881 

Choose numbers with 
47 -387 (mod 170) 

1 = 1 (mod 1 70) 
- 170 < 4 7 1 < 170 

2 - ' - 2 

Observe that 

472 + 12 -3872 + 12 

So we can write 

_ 0 (mod 170) 

4 72 + 12 = 170 . 13 
3872 + 12 = 170 . 881 

Multiply to get 

(472 + 12)(3872 + 12) 

= 1702 . 13 . 881 

Write 

p any prime 1 (mod 4) 

A2+B2=Mp 
with M < p 

Choose numbers u and v with 
u A (mod M) 

v = B (mod M) 

-lM < u v < lM 2 - ' - 2 

Observe that 

u2+v2-A2+B2 

0 (mod M) 

So we can write 

u2 + v2 =Mr 
A2 + B2 =Mp 

(for some 1 < r < M) 

Multiply to get 

(u2 + v2)(A2 + B2) = M2rp 

Use the identity (u2 + v2)(A2 + B2) = (uA + vB)2 + (vA - uB)2• 

(47. 387 + 1. 1)2 + (1. 387 - 47. 1)2 

= 1702 . 13. 881 
181902 + 340 2 = 1702 . 13. 881 
� '-v-' 

each divisible by 170 

Divide by 1 702
. 

( 18190 ) 2 (340 ) 2 
= 13. 881 

170 
+ 

170 

1072 + 22 = 13 . 881 

This gives a smaller multiple of 881 

written as a sum of two squares. 

(uA + vB)
2 

+ (vA - uB)
2 

= M2rp 
'--v--" '--v--" 

each divisible by M 

Divide by M2
. 

(uA::/BY 
+ 

(vA�uBy 
=rp 

This gives a smaller multiple of p 
written as a sum of two squares. 

Repeat the process until p itself is written as a sum of two squares. 

187 
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Descent Procedure starting with the equation 1072 + 22 = 13 · 881. This gives 

p = 881 

1072 + 22 = 13 . 881 
3 = 107 (mod 13) 
2 2 (mod 13) 

32 + 22 = 13. 1 

p any prime 1 (mod 4) 

A2 +B2 =Mp 
u A (mod M) 
v B (mod M) 

u2 + v2 =Mr 

Use the identity (u2 + v2)(A2 + B2) = (uA + vB)2 + (vA - uB)2• 

(3 · 107 + 2 · 2)2 + (2 · 107 - 3 · 2)2 ( uA + vB)2 + ( vA - uB)2 = M2rp 
= 132. 881 

3252 + 2082 = 132 . 881 

Divide by 132. Divide by M2• 

252 + 162 = 881 
(uA + vB) 2 (vA- uB) 2 

= 
M 

+ 
M 

rp 

This second application of the Descent Procedure has given us the solution to 

our original problem, 

881=252+162. 

Of course, for a small number such as 881 it might have been easier to solve 881 = 
a2 + b2 by trial and error, but as soon as p becomes large, the Descent Procedure 

is definitely more efficient. In fact, each time the Descent Procedure is applied, the 

multiple of p is at least cut in half. 

To show that the Descent Procedure actually works, we need to verify five 

assertions. At the first step we need to find numbers A and B with 

(i) A 2 + B2 = Mp and M<p. 

To do this, we take a solution x to the congruence 

x2 -1 (mod p) 

with 1 < x < p. Quadratic Reciprocity tells us that there is a solution,2 since we 

are assuming that p = 1 (mod 4). Then setting A = x and B = 1, we see that 

A 2 + B2 is divisible by p. Furthermore, 

A2+B2 (p- 1)2+12 2p-2 
M = < =p- <p. 

p p p 

2In practice, an easy way to solve x2 
= -1 (mod p) is to compute b = a(p-l)/4 (mod p) for 

some randomly chosen values of a. Euler's formula (Chapter 21) tells us that b2 
= (�) (mod p ) , so 

each choice of a gives us a 50% chance of winning. 
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In the second step of the Descent Procedure we chose numbers u and v satis
fying 

u _A (mod M), v _ B (mod M), and 

We then observed that 

1 1 
- -M < u v < -M. 

2 - ' - 2 

u2 + v2 = A 2 + B2 = 0 (mod M), 

so u2 + v2 is divisible by M, say u2 + v2 = Mr. The remaining four statements 
we need to check are as follows: 

(ii) r > 1. 

(iii) r < M. 

(iv) uA + vB is divisible by M. 

(v) vA - uB is divisible by M. 

We check them in reverse order. To verify (v) we compute 

vA- uB = B ·A- A· B = 0 (mod M). 

Similarly, for (iv) we have 

uA + vB =A· A+ B · B =Mp= 0 (mod M). 

For (iii) we use the fact that u and v are between -M /2 and M /2 to estimate 

r = 
u2 + v2 (M/2)2 + (M/2)2 

_ M 
M 

M 
< 

M -2
<

. 

Notice that this actually shows that r < M /2, so every time the Descent Procedure 
is used, the multiple of p is at least cut in half. 

Finally, to show that (ii) is true, we need to check that r # 0. So we assume 
that r = 0 and see what happens. Well, if r = 0, then u2 + v2 = 0, so we must have 
u = v = 0. But u = A (mod M) and v = B (mod M), so A and B are divisible 
by M. This implies that A 2 + B2 is divisible by M2. But A 2 + B2 = Mp, so we 
see that M must divide the prime p. We also know that M < p, so it must be true 
that M = 1. This means that A2 + B2 = p and we're already done writing p as a 
sum of two squares! Thus, either (ii) is true, or else we already had A2 + B2 = p 
and there was no reason to use the Descent Procedure in the first place. 

This completes the proof that the Descent Procedure always works, so we have 
now finished proving both parts of the Sum of Two Squares Theorem for Primes. 
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Digression on Sums of Squares and Complex Numbers 

The identity 

(u2 
+ v2)(A2 

+ B2) = (uA + vB)2 
+ (vA-uB)2, 

which expresses the product of sums of two squares as a sum of two squares, has 

been very useful, and we will find further uses for it in the next chapter. You may 

have wondered from whence this identity comes. The answer lies in the realm of 

complex numbers, that is, numbers of the form 

z = x + iy, 

where i is a square root of -1. Two complex numbers can be multiplied together 

in the usual way as long as you remember to replace i2 by -1. Thus, 

(x1 + iy1)(x2 + iy2) = x1x2 + ix1y2 + iy1x2 + i2y1y2 
= (x1x2 -Y1Y2) + i(x1y2 + y1x2). 

Complex numbers also have absolute values, 

This formula comes from viewing the number z = x + i y as corresponding to the 

point ( x, y) in the plane, and then j z j is just the distance from z to the origin ( 0, 0). 
The identity ( *) now comes from the following fact: 

The absolute value of a product is the product of the absolute values. 

In other words, jz1z2! = !z1! 
· 
!z2j. Writing this out in terms of x's and y's gives 

j(x1 + iy1)(x2 + iy2)J = !x1 + iy1l · lx2 + iy2I 
i(x1x2 -Y1Y2) + i(x1y2 + y1x2)I = jx1 + iy1l · lx2 + iy2j 

V(x1x2 -Y1Y2)2 + (x1y2 + y1x2)2 
= Jxi + yrJx� + y�. 

If we square both sides of this last equation, we get exactly our identity (where 

x1 = u, Yl = v, x2 = A, andy2 = -B). 
There is a similar identity involving sums of four squares, that is due to Euler: 

(a2 
+ b2 

+ c2 
+ d2)(A2 

+ B2 
+ 02 

+ D2) 
= ( aA + bB + cC + dD)2 

+ ( aB -bA -cD + dC)2 

+ (aC + bD -cA -dB)2 
+ (aD -bC + cB -dA)2. 
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This complicated identity is related to the theory of quatemions3 in the same way

that our identity is related to complex numbers. It is an unfortunate fact that there is 

no analogous identity for sums of three squares, and indeed the question of writing 

numbers as sums of three squares is much more difficult than the same problem for 

either two or four squares. 

Exercises 

24.1. (a) Make a list of all primes p < 50 that can be written in the form p = a2 +ab+ b2• 
For example, p = 7 has this form with a = 2 and b = 1, while p = 11 cannot be 
written in this form. Try to find a pattern and make a guess as to exactly which primes 
have this form. (Can you prove that at least part of your guess is correct?) 

(b) Same question for primes p that can be written in the form4 p = a2 + 2b2. 

24.2. If the prime p can be written in the form p = a2 + 5b2, show that 

p 1 or 9  (mod 20). 

(Of course, we are ignoring 5 = 02 + 5 · 12 .)

24.3. Use the Descent Procedure twice, starting from the equation 

5572 + 552 = 26. 12049, 

to write the prime 12049 as a sum of two squares. 

24.4. (a) Start from 2592 + 12 = 34 · 1973 and use the Descent Procedure to write the
prime 1973 as a sum of two squares. 

(b) Start from 2612 + 9472 = 10 · 96493 and use the Descent Procedure to write the
prime 96493 as a sum of two squares. 

24.5. (a) Which primes p < 100 can be written as a sum of three squares, 

(We allow one of a, b, c to equal 0, so, for example, 5 = 22 + 12 + 02 is a sum of 
three squares.) 

(b) Based on the data you collected in (a), try to make a conjecture describing which 
primes can be written as sums of three squares. Your conjecture should consist of the 
following two statements, where you are to fill in the blanks: 

3Quatemions are numbers of the form a+ ib + jc + kd, where i, j, and k are three different

square roots of -1 satisfying strange multiplication rules such as ij = k = -ji. 
4The question of which primes p can be written in the form p = a2 + nb2 has been extensively

studied and has connections with many branches of mathematics. There is even an entire book on 

the subject, Primes of the Form x2 + ny2, by David Cox (New York: John Wiley & Sons, 1989). 
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(i) If p satisfies 

_______ 

, then p is a sum of three squares. 

(ii) If p satisfies , then pis not a sum of three squares. 
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(c) Prove part (ii) of your conjecture in (b). [You might also try to prove part (i), but be 
warned, it is quite difficult.] 

24.6. (a) Let c > 2 be an integer such that the congruence x2 _ -1 (mod c) has a
solution. Show that c is a sum of two squares. (Hint. Show that the descent procedure 
described on page 187 still works.) 

(b) Carry out the descent argument for c = 65 starting from the equation 14 2 + 5 72
= 

53 · 65 to express 65 as a sum of two squares. (Note 65 is not prime.) 

(c) Is it true that every integer c > 2 satisfying c - 1 (mod 4) is a sum of two squares? 
If not, give a counterexample, and explain which set of the descent procedure fails. 

24.7. 

,r� 

Write a program that solves x2 + y2 
= n by trying x = 0, 1, 2, 3, . . .  and

checking if n- x2 is a perfect square. Your program should return all solutions with x < y
if any exist and should return an appropriate message if there are no solutions. 

24.8. il (a) Write a program that solves x2 + y2 
= p for primes p - 1 (mod 4) using

Fermat's Descent Procedure. The input should consist of the prime pand a pair of 
numbers (A, B) satisfying 

A 2 + B2 _ 0 (mod p). 

(b) In the case that p = 5 (mod 8), modify your program as follows so that the user 
doesn't have to input (A, B). First, use successive squaring to compute the number 

A_ 

-2 · (-4)(p-5)/B (mod p). Then A2 + 1 _ 0 (mod p) (see Exercise 22.8), so
you can use (A, 1) as your starting value to perform the descent. 



Chapter 25 

Which Numbers Are Sums 

of Two Squares? 

In the last chapter we gave a definitive answer to the question of which primes can 

be written as sums of two squares. We now take up the same question for arbitrary 

numbers. Part of our strategy, which can be summed up in three words, has a long 

and glorious history: 

Divide and Conquer! 

Of course, "Divide" doesn't mean division per se. Rather, it means to break up 

the problem into pieces of manageable size, and then "Conquer" means we need 

to solve each piece. But these two steps, which may suffice for warfare, have to be 

followed by a third step: fitting the pieces back together. This unification step uses 

the identity from the last chapter that expresses a product of sums of squares as a 

sum of squares: 

(u2 + v2)(A2 + B2) = (uA + vB)2 + (vA - uB)2.

Here, then, is our step-by-step strategy for expressing a number mas a sum of two 

squares. 

Divide: Factor m into a product of primes P1P2 · · · Pr · 

Conquer: W rite each prime Pi as a sum of two squares.

Unify: Use the identity (*)repeatedly to write mas a 

sum of two squares. 

We know from the Sum of Two Squares Theorem for Primes (Theorem 24.1) 
exactly when the Conquer step works, since we know that a prime p is a sum of two 

squares if and only if either p = 2 or p 1 (mod 4). For example, to write 10 as
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a sum of two squares, we factor 10 = 2 · 5, write 2 and 5 as sums of two squares, 

and 

and use the identity to recombine 

Here's a more complicated example. We'll write m = 1105 as a sum of two 

squares. 

Divide: Factor m = 1105 = 5 · 13 · 17. 
Conquer: W rite each prime pas a sum of two squares. 

5=22+12, 13=32+22, 17=42+12 
Unify: Use the identity (* ) repeatedly to write mas a 

sum of two squares. 

m = 1105 = 5 · 13 · 17 
= (22 + 12)(32+22)(42+12) 
= ((6 + 2)2 + (3 -4)2)(42+12) 
= (82 + 12)(42 + 12) 
= (32+1)2+(4-8)2 
= 332 + 42 

Our Divide, Conquer, and Unify strategy is successful for the number m pro-

vided that each prime factor of m is itself a sum of two squares. We know which 

primes can be written as sums of two squares, so we now have a method for writ

ing m as a sum of two squares if m factors as 

m _ pk1pk2pk3 pkr - 1 2 3 ··· r ,  

where every prime in the factorization is either 2 or is congruent to 1 modulo 4. 
However, if you look back at the list in the last chapter, you'll see that there are 

other m's that are sums of two squares. For example, 

and 

W hat's going on? Notice that in each case mis divisible by 32 and m = a2 + b2 
with both a and b divisible by 3. If we divide these three examples by 32, we get 

1 = � = 32 + 02 = 12 02 
32 32 

+ ' 

2 = 18 = 32 + 32 = 12 12 
32 32 

+ ' 

5 = 45 = 62 + 32 = 22 12 
32 32 

+ . 
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In other words, these three examples were created by taking the equations 

and 5 = 22 + 12 

and multiplying both sides by 32. 
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We can do this in general. Given any m = a2 + b2, we can multiply by d2 to 
get 

d2m = (da)2 + (db)2. 

Thus, if mis a sum of two squares, then so is d2m for any d. On the other hand, 
if m = a2 + b2 is a sum of two squares and if a and b have a common factor, say 
a = dA and b = dB, then we can factor out d2 to get 

Thus, m is divisible by d2, and m / d2 is a sum of two squares. 
The moral is that squares dividing m don't count when we're trying to write m 

as a sum of two squares. In other words, take m and factor it as 

m = P1P2 · · · PrM2, 

where the prime factors Pl, p2, ... , Pr are all different. Then m can be written as a 
sum of two squares provided that each of Pl, p2, ... , Pr can be written as a sum of 
two squares. For example, consider m = 252000. We factor m as 

m = 252000 = 25 
· 32 · 53 

· 7 = 2 · 5 · 7 · (22 · 3 · 5)2 = 2 · 5 · 7 · 602. 

The prime 7 is not a sum of two squares, so m is not a sum of two squares. (See 
Exercise 25.4.) 

As another example, take m = 25798500. Then 

m = 25798500 = 22 · 34 · 53 
· 72 · 13 = 5 · 13 · (2 · 32 · 5 · 7)2 = 5 · 13 · 6302. 

In this case, 5 and 13 are sums of squares, and we easily find that 65 = 5 · 13 = 

82 + 12. Multiplying both sides by 6302 gives 

m = 65 · 6302 = (8 · 630)2 + (1 · 630)2 = 50402 + 6302. 

In this chapter we have given a definitive answer to the question of which num
bers are sums of two squares. We summarize our result in the following theorem, 
which also includes further interesting facts whose proof we leave as exercises; see 
Exercises 25 .4 and 25 .5. 
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Theorem 25.1 (Sum of Two Squares Theorem). Let m be a positive integer. 
(a) Factor m as 

m = P1P2 · · · PrM2 
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with distinct prime factors Pl, P2, ... , Pr· Then m can be written as a sum of 
two squares exactly when every Pi is either 2 or is congruent to 1 modulo 4. 

(b) The number m can be written as a sum of two squares m = a2 + b2 with 
gcd( a, b) = 1 if and only if it satisfies one of the following two conditions: 

(i) m is odd and every prime divisor of m is congruent to 1 modulo 4. 

(ii) mis even, m/2 is odd, and every prime divisor of m/2 is congruent to 1 

modulo 4. 

The Return of the Pythagorean Triples 

Recall that1 a Pythagorean triple is a triple of positive integers (a, b, c) satisfying 

the equation 

a2 + b2 = c2, 

and the triple is called primitive if gcd(a, b) = 1. We are now in a position to 

completely describe all numbers that can appear as the hypotenuse c in a primitive 

Pythagorean triple. 

The Pythagorean Triples Theorem says that every primitive Pythagorean triple 

can be obtained by choosing relatively prime odd integers s > t > 1 and setting 

a= st, 
82 - t2 

b= --

2 ' 
c= 

82 + t2 
2 

So we are asking for a description of all numbers c for which we can find an s and 

a t, such that c = ( s2 + t2) / 2. In other words, c is the hypotenuse of a primitive 

Pythagorean triple exactly when the equation 

2c = s2 + t2 

has a solution in relatively prime odd integers s and t. 
Note first that c must be odd. (We checked this in Chapter 2.) So we are 

asking which numbers 2c with c odd can be written as sums of the squares of two 

relatively prime integers. The Sum of Two Squares Theorem says that this can 

be done if and only if every prime dividing c is congruent to 1 modulo 4. The 

following proposition records what we have proved. 

1 In this context, the phrase "Recall that. .. " is a polite way of saying "Now might be a good time 
to reread Chapter 2 and review the Pythagorean Triples Theorem in that chapter." 
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Theorem 25.2 (Pythagorean Hypotenuse Proposition). A number c appears as the 
hypotenuse of a primitive Pythagorean triple (a, b, c) if and only if c is a product 
of primes each of which is congruent to 1 modulo 4. 

For example, the number c = 1479 cannot be the hypotenuse of a primitive

Pythagorean triple, since 1479 = 3 · 17 · 29. On the other hand, c = 1105 can be

a hypotenuse, since 1105 = 5 · 13 · 17. Furthermore, we can solve s2 + t2 = 2c 
to find the values of s and t and then use these to find the corresponding a and b.

Thus, 1105 = 332 + 42 from earlier in this chapter, and then

2c = 2·1105=(12+12)(332 + 42) = 372 + 292. 

Nows= 37 and t = 29, so a= st= 1073 and b = (s2 - t2)/2 = 264. This gives

the desired primitive Pythagorean triple (1073, 264, 1105) with hypotenuse 1105. 

Exercises 

25.1. For each of the following numbers m, either write m as a sum of two squares or 

explain why it is not possible to do so. 

(a) 4370 (b) 1885 (c) 1189 (d) 3185 

25.2. For each of the following numbers c, either find a primitive Pythagorean triple with 

hypotenuse c or explain why it is not possible to do so. 

(a) 4370 (b) 1885 (c) 1189 (d) 3185 

25.3. Find two pairs of relatively prime positive integers (a, c) such that a2 + 5929 = c2.

Can you find additional pairs with gcd(a, c) > 1?

25.4. In this exercise you will complete the proof of the first part of the Sum of Two 

Squares Theorem (Theorem 25.1). Let m be a positive integer and factor mas 

m = P1P2 · · · PrM2

with distinct prime factors P1, P2, ... , Pr. If some Pi is congruent to 3 modulo 4, prove

that m cannot be written as a sum of two squares. 

25.5. In this exercise you will prove the second part of the Sum of Two Squares Theorem 

(Theorem 25.1). Let m be a positive integer. 

(a) If mis odd and if every prime dividing mis congruent to 1 modulo 4, prove that m

can be written as a sum of two squares m = a2 + b2 with gcd(a, b) = 1.

(b) If m is even and m / 2 is odd and if every prime dividing m / 2 is congruent to 1

modulo 4, prove that m can be written as a sum of two squares m = a2 + b2 with

gcd(a, b) = 1.

( c) If m can be written as a sum of two squares m = a2 + b2 with gcd (a, b) = 1, prove

that mis one of the numbers described in (a) or (b). 
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25.6. For any positive integer m, let

8(m) =(#of ways to write m = a2 + b2 with a> b > 0).

For example, 

while 8(15) = 0. 

8 ( 5) = 1, since 5 = 2 2 + 1 2,

8 ( 65) = 2, since 65 = 82 + 1 2 = 72 + 4 2,

(a) Compute the following values: 

(i) 8(10), (ii) 8(70), (iii) 8(130), (iv) 8(1105). 
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(b) If p is a prime and p = 1 (mod 4) , what is the value of 8 (p)? Prove that your answer
is correct. 

(c) Let p and q be two different primes, both congruent to 1modulo4. What is the value 
of 8 (pq)? Prove that your answer is correct.

( d) More generally, if Pl, ... , Pr are distinct primes, all congruent to 1 modulo 4, what 
is the value of 8 (p1p2 ... Pr)? Prove that your answer is correct.

25.7. 

!l 

Write a program that solves x2 +y2 = n by factoring n into a product of primes,
solving each u2 + v2 = p using descent (Exercise 24.8), and then combining the solutions
to find (x, y). 



Chapter 26 

As Easy as One, Two, Three 

Many number theoretic assertions have the form: 

Such and such a statement is true for every natural number n. 

Here are some interesting examples.1

• 12 22 2 
2n3 + 3n2 + n 

+ +
···

+n =
--

-6 --

for every n EN. 

• Every natural number n is equal to a product of prime numbers.

• Every natural number n is equal to a sum of at most four squares.

It is easy to check that these statements are true for any particular value of n. 
For example, they are true for n = 12, since

2 2 2 
2 . 123 + 3 . 122 + 12 

1 + 2 + ... + 12 = 650 = ----6
---, 

12 = 2. 2. 3, 

12 = 12 + 12 + 12 + 32. 

But even if we check that they are true for a lot of values of n, say for all n < 1000, 
that won't prove that they are true for all values of n. 

Of course, you might say that verifying a statement for all n < 1000 provides

convincing evidence that the statement is true. But no finite number of cases con

stitute an incontrovertible proof, and history shows that even copious quantities of 

1 We will prove the first statement in this chapter, and the second statement was proved in Chap
ter 7. The third statement is called Lagrange's Four Squares Theorem. We will not prove Lagrange's 
theorem, but in Chapter 25 we proved a related Two Squares Theorem due to Fermat. 
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evidence can be misleading. (We provide some cautionary tales at the end of this 

chapter.) 

Suppose that we want to prove that the formula 

1
2 22 2 2n3 + 3n2 + n 
+ +···+n =

---6--

is true for every n E N. We might start by checking that it is true for the first few 

values of n, 

12=1= 
2· 13+3· 12+1 

6 
' 

2 2 2 . 23 + 3 . 22 + 2 
1 +2 =5 = ---

6
---, 

12 + 22 + 32 = 14 = 
2 . 33 + 3 . 32 + 3 

6 

Now suppose that we have verified that formula ( *) is true for all values of n up 

to n = 99, and we want to check it for n = 100. If we start from scratch, then it's 

a lot of work to compute the left-hand side, 12 + 22 + · · · + 1002. But if we are 

clever, we will use the fact that ( * ) is true when n = 99 to simplify the calculation. 

Thus we are assuming that we have already proven the formula 

12 + 22 
+ ... + 992 = 

2 . 993 + 3 . 992 + 99 
= 328350 

6 
' 

so we can use this formula to simplify the computation of the left-hand side of ( *) 

for n = 100, 

We then check that we get the same value using n = 100 in the right-hand side 

of ( * ), 
2 . 1003 + 3 . 1002 + 100 

= 338350. 
6 

Now that we've handled the case n = 100, we can use it to do the case n = 101, 

then we can use the case n = 101 to do n = 102, and so on. That, in a nutshell,2 

is the idea underlying the Principle of Mathematical Induction. 

Step I (Initialization) Check the initial case n = 1. 

21 could be bounded in a nutshell, and count myself a king of infinite space, were it not that I have 
bad dreams. Hamlet (II.ii) 
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Step II (Induction Step) Assume that we've already completed the proof for all 

values up to n, and using this assumption, which is called the induction 

hypothesis, prove the statement for n + 1. 

If we can do both of these steps, then the mathematical statement that we are trying 

to prove is true for all values of n. Do you see why? Well, it's true for n = 1, 
because that was Step I. But since it's true for n = 1, Step II tells us that it's true 

for n = 2. But then Step II tells us that it's true for n = 3. And so on ... . 

To see how induction works in practice, we prove the sum-of-squares for

mula ( *) stated earlier. The statement that we are trying to prove is the formula 

S( ) 12 2 2 ? 2n3 + 3n2 + n 
n :  +2 +···+n = . 

6 

We start by establishing the initial case n = 1; that is, we verify that statement S ( 1) 
is true: 

12 = 1 and 
2 ·13+3 ·12+1 
------- =l. 

6 

Next we assume that we have already proven statement S ( n), and we want to verify 

that statement S(n + 1) is also true. Here's the argument. 

First we compute the left-hand side of the formula of Statement S(n + 1), 

12 + 22 + ... + n2 

This quantity is equal to 
t(2n3 + 3n2 + n) 

because our induction hypothesis 
is that statement S ( n) is true 

( )2 
2n3 + 3n2 + n 

( 1)2 + n+l = 
6 

+ n+ 

2n 3 + 9n 2 + l 3n + 6 

6 

Second we compute the right-hand side of the formula for Statement S ( n + 1), 

2(n + 1)3 + 3(n + 1)2 + (n + 1) 
6 

2n3 + 9n2 + l3n + 6 

6 

Comparing the results of the two computations, we have shown that 

12 2 2 ( l)2 
2(n+1)3+3(n+1)2+(n+l) 

+2 +···+n + n+ =-----------

6 
' 

which proves that statement S ( n + 1) is true. We have now proven: 

• Statement S ( 1) is true. 

• If Statement S ( n) is true, then Statement S ( n + 1) is also true. 

This completes the proof by induction that Statement S ( n) is true for every natural 

number n. 



[Chap. 26] As Easy as One, Two, Three 202 

Another Version of Induction. There is another version of induction that goes 

by the name complete induction or strong induction. In this version, we assume 

that we have proven the statement for all values of n up to and including some 

value N, and using this assumption, we prove that the statement is true when n is 

equal to N + 1. So complete induction requires the following two steps: 

Step I (Initialization) Check the initial case n = 1. 3 

Step II (Induction Step) Assume that we've already completed the proof for all 

values of n satisfying 1 < n < N, and using this assumption, prove that the 

statement is true for n = N + 1. 

We already used complete induction in Chapter 7 when we proved that every 

integer n > 2 is a product of primes. We briefly recall the proof in order to illustrate 

more formally how complete induction works. 

The statement to be proven is: 

P( n) : n is a product of primes. 

We want to prove that P(n) is true for all n > 2, so in this case our initialization 

step is to prove that P(2) is true. But P(2) is obviously true, since 2 is itself prime. 

We now make the inductive hypothesis that P(n) is true for all 2 < n < N, 
and we want to prove that P ( N + 1) is true. If N + 1 is prime, then we are done. 

Otherwise N + 1 factors as N + 1 = ab with a and b between 2 and N. The 

inductive hypothesis tells us that P (a) and P ( b) are true, so a and b are products 

of primes. Hence N + 1 = ab is also a product of primes, which completes our 

proof by induction that P ( n) is true for all n > 2. 

Why Experiments Aren't the Same as Proofs. As promised earlier, we give 

some examples of statements that are false, despite a significant amount of numer

ical evidence that they are true. Recall from Chapter 13 that the prime number 

counting function 7r (x) counts the number of primes less than or equal to x. We 

have proven that not only are there infinitely many primes, but there are infinitely 

many that are congruent to 1 modulo 4, and there are infinitely many that are con

gruent to 3 modulo 4. (The latter is Theorem 12.2 and the former is Theorem 21.3.) 

In the 1850s Chebychev noted that primes congruent to 3 modulo 4 seem to be 

more common than primes congruent to 1 modulo 4. To study this phenomenon, 

3Some authors omit the initialization step and instead begin the induction step with N = 0. Note 
that the induction hypothesis for N = 0 is vacuous, so doing the induction step for N = 0 means 
directly proving the statement for n = 1, which is the same as doing the initialization step. 
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we split the prime counting function into two pieces, 

7r1(x) = #{primespwithp < x andp 1(mod4)}, 

7r3(x) = #{primespwithp < x andp = 3 (mod 4)}. 

Then with a certain amount of work, one can check that 

7r3(x) > 7r1(x) for all x < 10000. 
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This provides moderately convincing evidence that ?T3 ( x) is always greater than 
1TI (x ), but in 1957 Leech showed that4 

7r1(26861) = 1473 and 7r3(26861) = 1472. 

The situation is even more striking if we instead look at primes modulo 3. Thus 
if we let 

1T(1 mod 3) (x) = #{primes p with p < x and p = 1 (mod 3)}, 

1T(2 mod 3) (x) = #{primes p with p < x and p = 2 (mod 3)}, 

then experiments show that 1T(2 mod 3) (x) is larger than 1T(I mod 3) (x) for all x up to 
600 billion! Indeed, 

for all x < 608981813028, 

but in 1978 Bays and Hudson proved that 

1T(1 mod 3) (608981813029) > 1T(2 mod 3) (608981813029). 

So although experimentation is useful in making conjectures, these examples 

show why mathematicians insist on rigorous proofs before they accept that a math

ematical statement is true, 

Exercises 

26.1. Use induction to prove the following statements. 
n2(n + 1)2 

(a) 13 + 23 + · · · + n3 = ----

4 
n3 -n 

(b) 1 · 2 + 2 · 3 + 3 · 4 + · · · + ( n - 1) n = 

3 
. 

4Earlier, in 1914, Littlewood proved that as x increases, the difference 7r3 ( x) - 7r1 ( x) switches 
back and forth between positive and negative values infinitely many times! 
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n(n + l)(n + 2) n(n + 1) . . 
(c) T1 + T2 + · · · + Tn = 

6
, where Tn = 

2 
1s the nth tnangular 

number. (We discussed triangular numbers in Chapter 1 and will return to the subject 

in more detail in Chapter 31.) 

(d) For every natural number n, write 

1 1 1 An 
1+-+-+···+-=-

2 3 n Bn 

as a fraction in lowest terms. Prove that the denominator Bn divides n!. (Although 

there are other ways to prove this statement, you should give a proof by induction.) 

26.2. The Fibonacci sequence l, 1, 2, 3, 5, 8, 13, 21, ... is defined by setting F1 = F2 = 1, 
and then subsequent terms in the sequence are determined by the formula 

(In words, each term is the sum of the previous two terms.) Prove by induction that 

F1 + F2 + F3 + · · · + Fn = Fn+2 - 1 for all natural numbers n. 

We will discuss the Fibonacci sequence in greater detail in Chapter 39. 

26.3. When doing induction, the initialization step may start at some value other than n = 
1. For example, use induction to prove that

for all n > 6. 

26.4. Consider the polynomial 

F(x) = x 2 - x - 41.

Its first few values at natural numbers are 

n 1 2 3 4 5 6 7 8 9 10 
F(n) 41 43 47 53 61 71 83 97 113 131 

all of which are prime. That seems unusual, so let's check the next 10 values: 

n 11 12 13 14 15 16 17 18 19 20 
F(n) 151 173 197 223 251 281 313 347 383 421 

They're all prime, too! 

(a) Compute the next 10 values of F(n); that is, compute F(21), F(22), . . .  , F(30). Are 

they all prime? 

(b) Do you think that F ( n) is prime for every natural number n? 
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26.5. We give a proof by induction that life exists on other planets! More precisely, con

sider the fallowing statement: 

£ ( n) : Given any set of n planets, if one of the planets 

supports life, then all of the planets in the set support life. 

We are going to prove, by induction, that the statement £ ( n) is true for all natural num

bers n. 

We start with £ ( 1), the initial case. It asserts that if we have one planet, and that planet 

supports life, then that planet supports life. So statement £ ( 1) is certainly true. 

Next we make the induction hypothesis that £ ( n) is true, and we consider a set con

sisting of n + 1 planets, at least one of which supports life. We let P1, ... , P n+ 1 be the 

planets in the set, with P1 being the planet that we know supports life. Now consider 

the subset { P1, P2, ... , P n } . This is a set of n planets, at least one of which supports 

life, so by the induction hypothesis, all of P1, ... , Pn support life. Next consider the sub

set { P1, P3, ... , P n+ 1}. This is also a set of n planets, at least one of which supports life, 

so again the induction hypothesis tells us that they all support life. We have proven that all 

of the planets P1, P2, ... , P n+ 1 suppport life, so we have proven that statement £ ( n + 1) 
is true. 

This completes the proof by induction that the statement£ ( n) is true for every natural 

number n. Now consider the set of planets 

{Mercury, Venus, Earth, Mars, Jupiter, Saturn} . 

This is a set of planets, at least one of which supports life, so our proof by induction 

conclusively demonstrates that there is life on Mars (as well as on Mercury, Venus, etc.). 

Is this conclusion correct? If not, then there must be something wrong with our induc

tion proof. What's wrong? 



Chapter 27 

Euler's Phi Function 

and Sums of Divisors 

When we studied perfect numbers in Chapter 15, we used the sigma function CT (n) , 

where CT ( n) is defined to be the sum of all the divisors of n. We now propose to 

conduct what may seem like a strange experiment. We take all the divisors of n, 

apply Euler's phi function to each divisor, add the values of Euler's phi function 

and see what we get. 

We start with an example, say n = 15. The divisors of 15 are 1, 3, 5, and 15. 
We first evaluate Euler's phi function at the numbers 1, 3, 5, and 15, 

¢(1) = 1, ¢(3) = 2, ¢(5) = 4, ¢(15) = 8. 

Next we add the values to get 

¢(1) + ¢(3) + ¢(5) + ¢(15) = 1 + 2 + 4 + 8 = 15. 

The result is 15, the number we started with; but surely that's just a coincidence. 

Let's try a larger number that has lots of factors, say n = 315. The divisors 

of 315 are 

1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315, 

and if we evaluate Euler's phi function and add the values, we get 

¢(1) + ¢(3) + ¢(5) + ¢(7) + ¢(9) + ¢(15) + ¢(21) + ¢(35) 
+ ¢( 45) + ¢(63) + ¢(105) + ¢(315) 

= 1+2+4 + 6 + 6 + 8 + 12 + 24 + 24 + 36 + 48 + 144 

= 315. 
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Again we end up with the number we started with. This is beginning to look like 

more than a coincidence. We might even make the following guess. 

Guess. Let di, d2, ... , dr be the numbers that divide n, including 

both 1 and n. Then 

¢(d1) + ¢(d2) + · · · + c/>(dr) = n. 

How might we go about proving that our guess is correct? The easiest case 

to check would be when n has very few divisors. For example, suppose that we 

take n = p, where p is a prime. The divisors of p are 1 and p, and we know that 

¢(1) = 1 and ¢(p) = p -1. Adding these gives 

¢(1) + ¢(p) = 1 + (p -1) = p. 

So we have verified our guess when n is a prime. 

Next we try n = p2. The divisors of p2 are 1, p, and p2, and we know from 

Chapter 11 that ¢(p2) = p2 -p, so we find that 

¢(1) + c/>(p) + ¢(p2) = 1 + (p -1) + (p2 -p) = p2. 

Notice how the terms cancel until only p2 is left. 

Emboldened by these successes, let's try to verify our guess when n = pk 
is any power of a prime. The divisors of pk are 1, p, p2, ... , pk. In Chapter 11 

we found a formula for Euler's phi function at a prime power: ¢(pi) =pi -pi-l. 
Using this formula enables us to compute 

¢(1) + ¢(p) + ¢(p2) + ... + cf>(pk-1) + c/>(pk) 

= 1+(p-1) + (p2 -p) + ... + (pk-1 -pk-2) +(pk -pk-1) 

=pk. 

Again the terms cancel, leaving exactly pk. We have now verified that our guess is 

true whenever n is a prime power. 

If n is not a power of a prime, the situation is somewhat more complicated. As 

always, we start with the simplest case. Suppose that n = pq is the product of two 

different primes. Then the divisors of n are 1, p, q, and pq, so we need to sum 

¢(1) + ¢(p) + ¢(q) + c/>(pq). 

We showed in Chapter 11 that Euler's phi function satisfies a multiplication for

mula ¢(mn) = ¢(m)¢(n) provided that m and n are relatively prime. In particu

lar, p and q are relatively prime, so c/>(pq) = ¢(p) ¢( q). This means that 

¢(1) + ¢(p) + ¢(q) + c/>(pq) = 1 + ¢(p) + c/>(q) + ¢(p)¢(q) 
= (1 + ¢(p)) (1 + ¢(q)) 
=pq, 
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which is exactly what we want. 
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Using this example as a guide, we are now ready to tackle the general case. For 

any number n, we define a function F ( n) by the formula 

F(n) =¢(di)+ ¢(d2) + · · · + ¢(dr ), where di, d2, ... , dr are 

the divisors of n. 

Our goal is to show that F( n) = n for every number n. The first step is to check 

that the function F satisfies a multiplication formula. 

Lemma 27.1. If gcd(m, n) = 1, then F(mn) = F(m)F(n). 

Proof Let 

di, d2, ... , dr be the divisors of n, 

and 

ei, e2, ... , es be the divisors of m. 

The fact that m and n are relatively prime means that the divisors of mn are pre

cisely the various products 

Furthermore, every di is relatively prime to every e1, so ¢(diej) = ¢(di)¢(e1)· 
Using these facts, we can compute 

F(mn) = ¢(diei) +···+ ¢(dies)+ ¢(d2ei) + · · · + ¢(d2es) 
+ .. · + ¢(drei) + .. · + </>(dres) 

= ¢ (di)¢ ( e i) + · · · + ¢ (di)¢ (es) + ¢( d2) ¢ ( e i) + · · · + ¢ ( d2) ¢ (es) 
+ · · · + ¢(dr)¢(ei) + · · · + ¢(dr)¢(es) 

= (¢(di)+ ¢(d2) + · · · + ¢(dr)) · (¢(ei) + ¢(e2) +···+ ¢(es)) 
= F(m)F(n). 

This completes the proof of the lemma. D 

Using the lemma, it is now a simple matter to prove the following summation 

formula for Euler's phi function. 

Theorem 27.2 (Euler's Phi Function Summation Formula). Let di, d2, ... , dr be 

the divisors of n. Then 
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Proof We let F(n) = ¢(d1) + ¢(d2) + · · · + ¢(dr), and we need to verify that 

F(n) always equals n. The calculation of ¢(1) + ¢(p) + ¢(p2) +···+¢(pk) on 

page 207 shows that for prime powers we have F(pk) = pk. Now factor n into a 

product of prime powers, say n = p�1 p�2 · · · p�t. The different prime powers are 

relatively prime to one another, so we can use the multiplication formula for F to 

compute 

F(n) = F(p�1P�2 ... P�t) 
= F(p�1 )F(p�2) ... F(p�t) from the multiplication formula, 

since F(pk) =pk for prime powers, - pk1pk2 pkt - 1 2 ... 
t 

=n. 

Exercises 

27.1. A function f (n) that satisfies the multiplication formula 

f(mn) = f(m)f(n) for all numbers m and n with gcd ( m, n) = 1 

D 

is called a multiplicative function. For example, we have seen that Euler's phi func
tion ¢( n) is multiplicative (Chapter 11) and that the sum of divisors function a ( n) is 
multiplicative (Chapter 15). 

Suppose now that f ( n) is any multiplicative function, and define a new function 

g(n) = f (di) + f (d2) + · · · + f (dr ), where di, d2, ... , dr are the divisors of n. 

Prove that g( n) is a multiplicative function. 

27.2. Liou ville' s lambda function A. ( n) is defined by factoring n into a product of primes, 
n = p11 p�2 • • • p;t, and then setting 

A.(n) = 
(-l )k1+k2+··+kt. 

(Also, we let A.(1) = 1.) For example, to compute A.(1728) , we factor 1728 = 26 
· 
33, and 

thenA.(1728) = (-1)6+3 = (-1)9 
= 

-1. 
(a) Compute the following values of Liouville's function: A.(30); A.(504); A.(60750). 
(b) Prove that A. ( n) is a multiplicative function as defined in Exercise 27 .1; that is, prove 

that if gcd(m, n) = 1, then A.(mn) = A.(m)A.(n). 
(c) We use Liouville's lambda function to define a new function G(n) by the formula 

where di, d2, ... , dr are the divisors of n. 

Compute the value of G ( n) for all 1 � n � 18. 
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(d) Use your computations in (c), and additional computations if necessary, to make a 

guess as to the value of G ( n) . Check your guess for a few more values of n. Use 

your guess to find the value of G(62141689) and G(601 19483). 
(e) Prove that your guess in (d) is correct. 

27 .3. Let di, d2, ... , dr be the numbers that divide n, including 1 and n. The t-power

sigma function CT t ( n) is equal to the sum of the tth powers of the divisors of n,

CTt (n) =di+ d� + · · · + d�. 

For example, CT 2  (10) = 12 + 22 + 52 + 102 = 130. Of course, CTi ( n) is just our old friend,

the sigma function CT ( n) . 
(a) Compute the values of CT 2 (12), CT3 (10), and ao(18). 
(b) Show that if gcd (m, n) = 1, then CTt (mn) = at (m) at (n) . In other words, show that

CTt is a multiplicative function. Is this formula still true if m and n are not relatively 

prime? 

(c) We showed in Chapter 15 that CT(pk) = (pk +
i - l)/(p - 1). Find a similar formula

for CT t (pk), and use it to compute a 4 ( 26). 
(d) The function CTo(n) counts the number of different divisors of n. Does your formula 

in ( c) work for a 0? If not, give a correct formula for a 0 (pk ) . Use your formula 

and (b) to find the value of o-0(42336000). 

27 .4. Let n be a positive integer. If the fractions 

1 2 3 n- 1 n 
' ' ' ... ' 

n n n n n 

are reduced to lowest terms, their denominators are divisors of n. For each divisor d of n, 
let N ( d) be the number of fractions in the list whose denominator is exactly equal to d. 

(a) Let di, d2, ... , dr be the numbers that divide n, including 1 and n. What is the value

of 

N(di) + N(d2) + · · · + N(dr )?

(b) For n = 12, write the fractions i
i
2, i

2
2, ... , g in lowest terms and compute the values

of N(l), N(2), N(3), N(4), N(6), and N(12). 
(c) Prove that N(n) = <f>(n) . 
(d) More generally, prove that N(d) = <f>(d) for every d that divides n. 
(e) Use (a) and (d) to give an alternative proof of Euler's Phi Function Summation For

mula (Theorem 27 .2). 



Chapter 28 

Powers Modulo p 

and Primitive Roots 

If a and pare relatively prime, Fermat's Little Theorem (Chapter 9) tells us that 

ap-l
1 (mod p). 

Of course, it's quite possible that some smaller power of a is congruent to 1 mod
ulo p. For example, 23 1 (mod 7). On the other hand, there may be some values 
of a that require the full (p - l)st power. For example, the powers of 3 modulo 7 
are 

31 
_ 3 (mod 7), 

34 4 (mod 7), 

32 2 (mod 7), 

35 5 (mod 7), 

33 6 (mod 7), 

36 1 (mod 7). 

Thus, the full sixth power of 3 is required before we get to 1 modulo 7. 
Let's look at some more examples to see if we can spot a pattern. Table 28.1

lists the smallest power of a that is congruent to 1 modulo p for the primes p = 5, 7, 
and 11 and for each a between 1 and p - 1. We might make two observations. 

1. The smallest exponent e such that ae _ 1 (mod p) seems to divide p - 1.

2. There are always some a's that require the exponent p - 1.

Since we are studying this smallest exponent in this chapter, we give it a name. 
The order of a modulo pis the quantity 

e (a )  = 

(the smallest exponent e > 1)
P such that ae 1 (mod p) 
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p=5 

11 = 1 (mod 5) 

24 = 1 (mod 5) 

34 = 1 (mod 5) 

42 = 1 (mod 5) 

p=7 

11 = 1 (mod 7) 

23 _ 1 (mod 7) 

36 - 1 (mod 7) 

43 = 1 (mod 7) 

56 = 1 (mod 7) 

62 - 1 (mod 7) 

p = 11 

11 - 1 (mod 11) 

210 _ 1 (mod 11) 

35 - 1 (mod 11) 

45 = 1 (mod 11) 

55 = 1 (mod 11) 

610 - 1 (mod 11) 

710 - 1 (mod 11) 

810 = 1 (mod 11) 

95 - 1 (mod 11) 

102 _ 1 (mod 11) 

Table 28.1: Smallest Power of a That Equals 1 Modulo p 

(Note that we only allow values of a that are relatively prime top.) 
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Referring to Table 28.1, we see, for example, that e5(2) = 4, e7(4) = 3, and 
e11(7) = 10. Fermat's Little Theorem says that ap-l - 1 (mod p), so we know 
that ep (a) < p - 1. Our first observation was that ep (a) seems to divide p - 1. Our 
second observation was that there always seem to be some a' s with ep (a) = p - 1. 
We are going to check that both of these observations are true. We begin with the 
first, which is the easier of the two. 

Theorem 28.1 (Order Divisibility Property). Let a be an integer not divisible by 

the prime p, and suppose that an= 1 (mod p). Then the order ep(a) divides n. 

In particular, the order ep( a) always divides p - 1. 

Proof The definition of the order ep (a) tells us that 

aep(a) - 1 (mod p), 

and we are assuming that an_ 1 (mod p) . We divide n by ep(a) to get a quotient 
and remainder, 

with 0 < r < ep(a). 
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Then 

213 

But r < ep ( a), and by definition, ep ( a) is the smallest positive exponent e that 

makes ae 1 (mod p), so we must haver= 0. Therefore n = ep (a) q, which 

shows that ep (a) divides n. 

Finally, Fermat's Little Theorem (Chapter 9) tells us that ap-l 
_ 1 (mod p), 

so taking n = p - 1, we conclude that ep (a) divides p - 1. D 

Our next task is to look at the numbers that have the largest possible order: 

ep (a) = p - 1. If a is such a number, then the powers 

2 3 p-3 p-2 p-1 ( d ) a, a , a , ... , a , a , a mo p 

must all be different modulo p. [If the powers are not all different, then we would 

have a i aJ (mod p) for some exponents 1 < i < j < p - 1, which would mean 

that aj-i _ 1 (mod p), where the exponent j - i is less than p - 1.] The numbers 

that require the largest exponent are of sufficient importance for us to give them a 

name. 

A number g with maximum order 

ep (g) = p - 1 
is called a primitive root modulo p. 

Looking back at the tables for p = 5, 7, 11, we see that 2 and 3 are primitive roots 

modulo 5, that 3 and 5 are primitive roots modulo 7, and that 2, 6, 7, and 8 are 

primitive roots modulo 11. 

We now come to the most important result in this chapter. 

Theorem 28.2 (Primitive Root Theorem). Every prime p has a primitive root. 

More precisely, there are exactly <f>(p - 1) primitive roots modulo p. 

For example, the Primitive Root Theorem says that there are ¢(10) = 4 prim

itive roots modulo 11 and, sure enough, we saw that the primitive roots mod

ulo 11 are the numbers 2, 6, 7, and 8. Similarly, the theorem says that there are 

¢(36) = 12 primitive roots modulo 37 and that there are ¢(9906) = 3024 primi

tive roots modulo 9907. In fact, the primitive roots modulo 37 are the 12 numbers 

2, 5, 13, 15, 17, 18, 19, 20, 22, 24, 32, 35. We won't waste the space to list the 3024 
primitive roots modulo 9907. One drawback of the Primitive Root Theorem is that 

it doesn't give a method for actually finding a primitive root modulo p. All we can 

do is start checking a = 2, a = 3, a = 5, a = 6, ... until we find a value of a 
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with ep(a) = p -1. (Do you see why 4 can never be a primitive root?) However, 

once we find one primitive root modulo p, it is not hard to find all the others (see 

Exercise 28.5). 

Proof of the Primitive Root Theorem. We prove the Primitive Root Theorem using 

one of the most powerful techniques available in number theory: COUNTING. The 

use of counting was already illustrated in our proof of Theorem 11.1 on page 77. 

For the current proof, we will take a set of numbers and count how many numbers 

are in the set in two different ways. This idea of counting something in two different 

ways and comparing the results has wide applicability in number theory, and indeed 

in all mathematics. 

For each number a between 1 and p -1, we know that the order ep (a) divides 

p-1. So for each number d dividing p-1, we might ask how many a's have their 

order ep(a) equal to d. We call this number 'ljJ(d). In other words, 

'ljJ(d) = (the number of a's with 1 < a< p and ep(a) = d). 

In particular, 'ljJ (p -1) is the number of primitive roots modulo p. 

Let n be any number dividing p -1, say p -1 = nk. Then we can factor the 

polynomial xp- l -1 as 

xp- l -1 = xnk -1 

= (Xn)k -1 

= (Xn - l)((Xn)k-1 + (Xn)k-2 + ... + (Xn)2 + xn + l). 

We count how many roots these polynomials have modulo p. 

First we observe that 

xp- l -1 - 0 (mod p) has exactly p -1 solutions, 

since Fermat's Little Theorem tells us that X = 1, 2, 3, ... , p - 1 are all solu

tions. On the other hand, the Polynomial Roots Mod p Theorem (Theorem 8.2 on 

page 60) says that a polynomial of degree D with integer coefficients has at most D 

roots modulo p, so 

xn -1 = 0 (mod p) 
has at most n solutions, and 

has at most nk - n solutions. 
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We now know that 

xp-i -1 = (Xn -1) x ((Xn)k-i + (Xn)k-2 + ... + xn + 1) 
'----v----" '----v---' 

exactly P - i = nk at most n at most nk -n roots mod p 
roots mod p roots mod p 
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The only way for this to be true is if xn -1 has exactly n roots modulo p, since 

otherwise the right-hand side won't have enough roots. This proves the following 

important fact: 

If n divides p -1, then the congruence 

xn -1 - 0 (mod p) 
has exactly n solutions with 0 � X < p. 

Now let's count the number of solutions to xn - 1 = 0 (mod p) in a different 

way. If X = a is a solution, then an = 1 (mod p), so by the Order Divisibility 

Property, we know that ep (a) divides n. So if we look at the divisors of n and if for 

each divisor d of n we take those a's with ep (a) = d, then we end up with all the 

solutions of the congruence xn -1 0 (mod p). In other words, if di, d2, ... , dr 
are the divisors of n, then the number of solutions to xn -1 = 0 (mod p) is equal 

to 

'l/J (di ) + 'l/J ( d2 ) + · · · + 'l/J ( dr) . 

We have now counted the number of solutions to xn -1 _ 0 (mod p) in two 

different ways. First, we showed that there are n solutions, and second we showed 

that there are 'l/;( di) + · · · + 'l/;( dr) solutions. These numbers must be the same, so 

merely by counting the number of solutions, we have proven the following beauti

ful formula: 

Let n divide p -1 and let di, d2, ... , dr be the divisors of n, including 

both 1 and n. Then 

This formula should look familiar; it's exactly the same as the formula we proved 

for Euler's phi function in Chapter 27. We now use the fact that ¢ and 'ljJ both 

satisfy this formula to show that ¢ and 'ljJ are actually equal. 

Our first observation is that ¢ ( 1) = 1 and 'ljJ ( 1) = 1, so we 're okay for n = 1. 
Next we check that ¢(q) = 'l/;(q) when n = q is a prime. The divisors of q are 1 
and q, so 

¢(q) + ¢(1) = q = 'l/;(q) + 'l/;(1). 

But we know that ¢(1) = 'l/;(1) = 1, so subtracting 1 from both sides gives ¢(q) = 

'l/;( q). 



[Chap. 28] Powers Modulo p and Primitive Roots 

How about n = q2? The divisors of q2 are 1, q, and q2, so 

¢(q2) + ¢(q) + ¢(1) = q2 
= '!/J(q2) + 'l/J(q) + '!/J(l). 
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But we already know that ¢(q) = 'l/J(q) and ¢(1) = '!/J(l), so canceling them from 

both sides gives ¢ ( q2) = 'ljJ ( q2). 

Similarly, if n = q1q2 for two different primes q1 and q2, then the divisors of n 

are 1, q1, q2, and q1q2. This gives 

¢(q1q2) + ¢(q1) + ¢(q2) + ¢(1) = qiq2 

= '!/J(q1q2) + '!/J(q1) + '!/J(q2) + '!/J(l), 

and canceling the terms that we already know are equal leaves ¢(q1q2) = '!/J(q1q2). 

These examples illustrate how to prove that ¢(n) = 'lj;(n) for every n by work

ing up from small values of n to larger values of n. More formally, we can give a 

proof by induction. So we assume that we already proved that ¢(d) = 'lj;(d) for all 

numbers d < n, and we attempt to prove that ¢(n) = 'lj; (n) . Let di, d2, ... , dr be 

the divisors of n as usual. One of these divisors is n itself, so relabeling them, we 

may as well assume that di = n. Using the summation formulas for¢ and '!/J, we 

find that 

¢(n) + ¢(d2) + ¢(d3) + · · · + ¢(dr) = n 

= 'l/J ( n) + 'l/J ( d2) + 'l/J ( d3) + · · · + 'l/J ( dr) . 

But all of the numbers d2, d3, ... , dr are strictly less than n, so our assumption 

tells us that ¢(di) = 'ljJ (di) for each i = 2, 3, ... , r. This means that we can cancel 

these values from both sides of the equation, which leaves the desired equality 

¢(n) = 'l/J(n). 

To recapitulate, we have proved that for each number n dividing p - 1 there 

are exactly ¢(n) numbers a with ep (a) = n. Taking n = p - 1, we see that there 

are exactly ¢(p - 1) numbers a with ep(a) = p - 1. But a's with ep(a) = p - 1 
are precisely the primitive roots modulo p, so we have proved that there are exactly 

¢(p - 1) primitive roots modulo p. Since the number ¢(p - 1) is always at least 1, 
we see that every prime has at least one primitive root. This completes our proof 

of the Primitive Root Theorem. D 

The Primitive Root Theorem tells us that there are lots of primitive roots mod

ulo p, in fact, precisely ¢(p - 1) of them. Unfortunately, it doesn't give us any 

information at all about which specific numbers are primitive roots. Suppose we 

tum the question around, fix a number a, and ask for which primes p is a a prim

itive root. For example, for which primes p is 2 a primitive root? The Primitive 

Root Theorem gives us no information at all! 
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Here is a list of the order ep ( 2) for all primes up to 100, where we write ep 

instead of ep ( 2) to save space. 

e3 = 2 es= 4 e1 = 3 en= 10 e13 = 12 e11 = 8 
el9 = 18 e23 = 11 e29 = 28 e31 = 5 e37 = 36 e41 = 20 
e43 = 14 e47 = 23 es3 = 52 esg = 58 e51 = 60 e57 = 66 
en= 35 e13 = 9 e1g = 39 es3 = 82 esg = 11 eg7 = 48 

Looking at this list, we see that 2 is a primitive root for the primes 

p= 3,5,11,13,19,29,37,53,59,61,67,83. 

Do you see any pattern? Don't be discouraged if you don't; no one else has found 

a simple pattern, either. However, in the 1920s Emil Artin made the following 

conjecture. 

Conjecture 28.3 (Artin's Conjecture). There are infinitely many primes p such that 
2 is a primitive root modulo p. 

Of course, there's nothing special about the number 2, so Artin also made the 

following conjecture. 

Conjecture 28.4 (The Generalized Artin Conjecture). Let a be any integer that is 
not a peifect square and is not equal to - l. Then there are infinitely many primes p 

such that a is a primitive root modulo p. 

Artin's Conjecture is still unsolved, although much progress has been made on 

it in recent years. For example, in 1967 Christopher Hooley proved that if a cer

tain other conjecture called the Generalized Riemann Hypothesis is true, then the 

Generalized Artin Conjecture is also true. Equally striking, Rajiv Gupta, M. Ram 

Murty, and Roger Heath-Brown proved in 1985 that there are at most three pair

wise relatively prime values of a for which the Generalized Artin Conjecture is 

false. Of course, these three putative "bad values" of a probably don't exist, but 

no one yet knows how to prove that they don't exist. And no one has been able 

to prove that a = 2 is not a bad value, so even Artin's original conjecture remains 

unproved! 

Costas Arrays 
We are now going to describe Costas arrays, which are mathematical objects that 

have applications to sonar and radar technology.1 Surprisingly, Costas arrays are 

also related to primitive roots! In order to create a Costas array, we start with a 

square array of boxes, for example the following six-by-six array, where we have 

labeled the rows and columns: 

1 J. P. Costas, A study of a class of detection waveforms having nearly ideal range-Doppler ambi

guity properties, Proceedings of the IEEE, 72, 8 (1984), 996-1009. 
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1 2 3 4 5 6 

1 >---+---+---+---+--+-----< 
2 >---+---+---+---+--+-----< 
3 >---+---+---+---+--+-----< 
4 >---+---+---+---+--+-----< 
5 >--+---+---+---+--.+---< 
6 

�---+---+--�� 
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We next put dots into the centers of some of the boxes, but the dots have to 
obey the following Costas rules: 

1. Every row has exactly one dot. 

2. Every column has exactly one dot. 

3. Form all of the line segments by connecting every pair of dots. Then no two 
line segments have the same length and the same slope. 

It's not hard to fill in the dots to obey Rules 1 and 2. Such arrays are called 
permutation arrays. But its much trickier trying to satisfy Rule 3. Here is one 
Costas array of size six and two permutation arrays that are not Costas arrays. For 
the non-Costas examples, we have drawn line segments that have the same length 
and the same slope. 

• • 

• • 

• , 
• , 

• v • 
• • 

Costas array Not a Costas array Not a Costas array 

Lloyd R. Welch discovered an interesting way to use primitive roots to con
struct Costas arrays of size p - 1, where p is a prime. Here's how his construction 
works. Let g be a primitive root modulo p. Then in the i1h row we put a dot in the 
j1h column, where i and j are related by 

j _ g
i (mod p). 

Here we take i and j to lie between 1 and p - 1. 
We illustrate by taking p = 11 and g = 2. We start by making a table of powers 

of 2 modulo 11. 

Rowi 1 2 3 4 5 6 7 8 9 10 
Columnj 2 4 8 5 10 9 7 3 6 1 

Rows and Columns Satisfying j = 2i (mod 11) 

Using Welch's procedure, this gives the following 10-by-10 Costas array: 
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12345678910 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 • 

• 

• 

• 

• 

• 

• 

• 

• 

• 
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We now verify that Welch's construction gives a Costas array. The fact that g 
is a primitive root means that the numbers g ,  g2, ... , gP-I (mod p) are distinct, so 
we certainly get a permutation array; that is, an array that satisfies Rules 1 and 2. 

We now verify that it also satisfies Rule 3. 

We write D( i ,  j) to denote a dot in the i1h row and the /h column. Suppose 
now that the line segment connecting the dots D ( i 1, j 1) and D ( i2, h) has the same 
length and the same slope as the line segment connecting the dots D ( u 1, v1) and 
D ( u2, v2). We will use this assumption to derive a contradiction. We observe that 
two line segments have the same length and slope if and only if the right triangles 
that they form are congruent, as in the following picture: 

~ 
D(ii,j,) � D(ui,v1) 

D(i2,]2) D(i2,ji) D(u2,v2) D(u2,v1) 

So our assumption that the line segments have the same length and slope is equiv
alent to the assertion that 

and )2 - JI = V2 - VI. 

We now use the Welch rule j _ gi (mod p), which applies to all four of the dots 

to rewrite the second equation in ( *) as 

We next pull out a factor from each side, 

But(*) says that i2 - ii = u2 - u1, so the quantities in parentheses are the same, 
and they are not zero modulo p, because we know that ii # i2 and u1 # u2. 
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(This is where we use the assumption that the dots are in different rows.) So we 

can cancel the quantities in parentheses from both sides of the congruence, which 

yields 
9i1 =gu1 (modp). 

Since g is a primitive root, this means that ii _ ui (mod p - 1), and since ii 
and ui are between 1 and p - 1, this means that they are equal. Since the array 

has only one dot in each row, this implies that D(ii,Ji) = D(ui, vi), and then(*) 

gives D ( i2, J2) = D ( u2, v2). This contradicts the assumption that we started with 

two different line segments, which completes the proof that Welch's procedure 

gives a Costas array. 

Welch's construction produces Costas arrays of size p - 1 for all primes p. 
There is another construction that gives Costas arrays of size p- 2 for prime powers 

pn; see Exercise 28 .18. However, these and other constructions do not give all 

possible sizes. It is known that Costas arrays exist in all sizes up to 31, but none 

are known of size 32 or 33. 

Exercises 

28.1. Let p be a prime number. 

(a) What is the value of 1+2 + 3 + · · · + (p - 1) (mod p)? 
(b) What is the value of 12 + 22 + 32 + · · · + (p - 1)2 (mod p)? 
(c) For any positive integer k, find the value of 

and prove that your answer is correct. 

28.2. For any integers a and m with gcd( a, m) = 1, we let em (a) be the smallest exponent 
e > 1 such that ae 1 (mod m). We call em(a) the order of a modulo m. 
(a) Compute the following values of em (a): 

(i) eg(2) (ii) eis(2) (iii) e15(3) (iv) eio(3) 
(b) Show that em(a) always divides ¢(m). 

28.3. In this exercise you will investigate the value of em (2) for odd integers m. To save 

space, we write em instead of em ( 2), so for this exercise em is the smallest power of 2 that 

is congruent to 1 modulo m. 
(a) Compute the value of em for each odd number 11 < m < 19. 
(b) Here is a table giving the values of em for all odd numbers between 3 and 149 [except 

for 11 < m < 19 which you did in part (a)]. 
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e3 = 2 es= 4 e1 = 3 eg = 6 
e11 = ** e19 = ** e21 = 6 e23 = 11 
e31 = 5 e33 = 10 e3s = 12 e37 = 36 
e4s = 12 e47 = 23 e4g = 21 es1 = 8 
esg = 58 e51 = 60 e53 = 6 e5s = 12 
e13 = 9 e15 = 20 e71 = 30 e1g = 39 
es7 = 28 esg = 11 e91 = 12 eg3 = 10 

e101 = 100 e103 = 51 e10s = 12 e107 = 106 
ells= 44 ell7 = 12 ellg = 24 ei21 = 110 
ei2g = 14 ei31 = 130 ei33 = 18 e13s = 36 
ei43 = 60 ei4s = 28 ei47 = 42 ei4g = 148 
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ell = ** ei3 = ** eis = ** 

e2s = 20 e27 = 18 e29 = 28 
e3g = 12 e41 = 20 e43 = 14 
es3 = 52 ess = 20 es1 = 18 
e57 = 66 e5g = 22 en = 35 
es1 = 54 es3 = 82 ess = 8 
egs = 36 eg7 = 48 egg= 30 

e10g = 36 ell1 = 36 ei13 = 28 
ei23 = 20 ei2s = 100 ei21 = 7 
ei31 = 68 ei3g = 138 ei41 = 46 

Using this table, find (i.e., guess) a formula for emn in terms of em and en whenever 

gcd(m, n) = 1. 

(c) Use your conjectural formula from (b) to find the value of ell227. (Note that 11227 = 
103. 109.) 

(d) Prove that your conjectural formula in (b) is true. 

(e) Use the table to guess a formula for epk in terms of ep, p, and k, where p is an odd 

prime. Use your formula to find the value of e5sg21. (Note that 68921 = 413 .) 

(f) Can you prove that your conjectural formula for epk in ( e) is correct? 

28.4. (a) Find all primitive roots modulo 13. 

(b) For each number d dividing 12, list the a's with 1 :Sa< 13 and e13 (a) = d. 

28.5. (a) If g is a primitive root modulo 37, which of the numbers g2, g3, ... , g8 are 

primitive roots modulo 37? 

(b) If g is a primitive root modulo p, develop an easy-to-use rule for determining if gk is 

a primitive root modulo p, and prove that your rule is correct. 

(c) Suppose that g is a primitive root modulo the prime p = 21169. Use your rule from 

(b) to determine which of the numbers g2, g3, ... , g20 are primitive roots modulo 

21169. 

28.6. (a) Find all primes less than 20 for which 3 is a primitive root. 

(b) If you know how to program a computer, find all primes less than 100 for which 3 is 

a primitive root. 

28.7. If a = b2 
is a perfect square and p is an odd prime, explain why it is impossible for a 

to be a primitive root modulo p. 

28.8. Let p be an odd prime and let g be a primitive root modulo p. 

(a) Prove that gk is a quadratic residue modulo p if and only if k is even. 

(b) Use (a) to give a quick proof that the product of two nonresidues is a residue, and 

more generally that (�) (�) = (c;). 
(c) Use (a) to give a quick proof of Euler's Criterion a(p-l)/2 

_ (�) (mod p ) . 
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28.9. Suppose that q is a prime number that is congruent to 1 modulo 4, and suppose that 
the number p = 2q + 1 is also a prime number. (For example, q could equal 5 and p 
equal 11.) Show that 2 is a primitive root modulo p. [Hint. Euler's Criterion and Quadratic 
Reciprocity will be helpful.] 

28.10. Let p be a prime, let k be a number not divisible by p, and let b be a number that has 
a kth root modulo p. Find a formula for the number of kth roots of b modulo p and prove 
that your formula is correct. [Hint. Your formula should depend only on p and k, not on b.] 

28.11. !i, Write a program to compute ep (a) , which is the smallest positive exponent e 
such that ae 

- 1 (mod p). [Be sure to use the fact that if ae -::J- 1 (mod p) for all 1 ::;; e <

p/2, then ep (a) is automatically equal top - l.] 

28.12. Il. Write a program that finds the smallest primitive root for a given prime p. 
Make a list of all primes between 100 and 200 for which 2 is a primitive root. 

28.13. If a is relatively prime to both m and n and if gcd( m, n) = 1, find a formula for 
emn (a) in terms of em (a) and en (a) . 

28.14. For any number m 2 2, not necessarily prime, we say that g is a primitive root 
modulo m if the smallest power of g that is congruent to 1 modulo m is the ¢( m )th power. 
In other words, g is a primitive root modulo m if gcd(g, m) = 1 and gk -::J- 1 (mod m) for 
all powers 1 < k < ¢(m). 

(a) For each number 2 :::; m < 25, determine if there are any primitive roots modulo m. 
(If you have a computer, do the same for all m < 50.) 

(b) Use your data from (a) to make a conjecture as to which m's have primitive roots and 
which ones do not. 

(c) Prove that your conjecture in (b) is correct. 

28.15. Recall that a permutation array is an array in which each row has exactly one dot 
and each column has exactly one dot. 

(a) How many N-by-N permutation arrays are there? [Hint. Place dots one row at a 
time, and think about how many choices you have for each successive row.] 

(b) (The rest of this exercise is for students who know how to multiply matrices.) We 
can tum a dotted array into a matrix by replacing each dot with a 1 and putting a 0 in 
all of the other places. For example, the 6-by-6 permutation array 

• 0 0 0 0 1 0 
• 0 0 1 0 0 0 

• 
• becomes the 6-by-6 matrix A=

0 0 0 1 0 0 
0 0 0 0 0 1 

• 
• 0 1 0 0 0 0 

1 0 0 0 0 0 

Compute the first few powers of this matrix A. In particular, what is the value of A 6? 
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(c) Let A be an N-by-N permutation matrix, that is, a matrix that is created from a 
permutation array. Prove that there is an integer k > 1 such that A k is the identity 
matrix. 

(d) Find an example of an N-by-N permutation matrix A such that the smallest number k 
for which A k is the identity matrix satisfies k > N. 

28.16. (a) Find all Costas arrays of size 3. 
(b) Write down one Costas array of size 4. 
(c) Write down one Costas array of size 5. 
(d) Write down one Costas array of size 7. 

28.17. Use Welch's construction to find a Costas array of size 16. Be sure to indicate 
which primitive root you used. 

28.18. This exercise describes a special case of a construction of Lempel and Golumb for 
creating Costas arrays of size p - 2. 

(a) Let g1 and g2 be primitive roots modulo p. (They are allowed to be equal.) Prove that 
for every 1 < i < p - 2 there is a unique 1 < j < p - 2 satisfying 

i + j - 1 gl g2 - .

(b) Create a (p - 2)-by-(p - 2) array by putting a dot in the ith row and the /h column
if i and j satisfy gf + g� = 1. Prove that the resulting array is a Costas array. 

(c) Use the Lempel-Golumb construction to write down two Costas arrays of size 15. 
For the first, use g1 = g2 = 5, and for the second, use g1 = 3 and g2 = 6. 



Chapter 29 

Primitive Roots and Indices 

The beauty of a primitive root g modulo a prime p is the appearance of every 
nonzero number modulo p as a power of g. So for any number 1 < a < p, we can 
pick out exactly one of the powers 

2 3 4 p-3 p-2 p-l 
g,g ,g ,g , ... ,g ,g ,g 

as being congruent to a modulo p. The exponent is called the index of a modulo p
for the base g. Assuming that p and g have been specified, we write l (a ) for the 
index. 

For example, if we use the primitive root 2 as base for the prime 13, then 
1(3) = 4, since 24 = 16 3 (mod 13). Similarly, 1(5) = 9, since 29 

= 512

5 (mod 13). To find the index of any particular number, such as 7, we just compute 
the powers 2, 22

, 23
, . . .  modulo 13 until we get to a number that is congruent to 7.

Another approach is to make a table of all powers of 2 modulo 13. Then we 
can read any information we want from the table. 

l 1 2 3 4 5 6 7 8 9 10 11 12 

21 (mod 13) 2 4 8 3 6 12 11 9 5 10 7 1 

Powers of 2 Modulo 13 

For example, to find l ( 11), we scan the second row of the table until we find the 
number 11, and then the index l ( 11) = 7 can be read from the first row. 

This suggests another way to arrange the data that might be more useful. What 
we do is rearrange the numbers so that the second row is in numerical order from 1 
to 12, and then we switch the first and second rows. The resulting table has the 
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numbers from 1 to 12 in order in the first row, and below each number is its index. 

a 1 2 3 4 5 6 7 8 9 10 11 12 

I(a) 12 1 4 2 9 5 11 3 8 10 7 6 

Table of Indices Modulo 13 for the Base 2 

Now it's even easier to read off the index of any given number, such as !(8) = 3 
and !(10) = 10. 

In the past, number theorists compiled tables of indices to be used for numerical 
calculations.1 The reason that indices are useful for calculations is highlighted by 
the following theorem. 

Theorem 29.1 (Rules for Indices). Indices satisfy the following rules: 

(a) I(ab) - I(a) + I(b) (mod p - 1) [Product Rule] 
(b) I(ak) - kI(a) (mod p - 1) [Power Rule] 

Proof These rules are nothing more than the usual laws of exponents, combined 
with the fact that g is a primitive root. Thus, to check (a), we compute 

gI(ab) _ab_ 9J(a)9I(b) _ 9I(a)+I(b) (mod p). 

This means that gI(ab)-I(a)-I(b) = 1 (mod p ) . But g is a primitive root, so J( ab)
I(a) - I(b) must be a multiple of p - 1. This completes the proof of (a). To 
check (b ), we perform a similar computation, 

gI(ak) = ak = (gI(a))k = gkI(a) (mod p). 

This implies that I(ak) - kl( a) is a multiple of p - 1, which is (b). D 

One of the most common mistakes made when working with indices is to re
duce them modulo p instead of modulo p - 1. It is important to keep in mind that 
indices appear as exponents, and the exponent in Fermat's Little Theorem is p - 1, 
not p. We reiterate: 

Always Reduce Indices 
Modulo p - 1. 

1 In 1839, Carl Jacobi published a Canon Arithmeticus containing a table of indices for all primes 

less than 1000. More recently, an extensive table containing all primes up to 50021 was compiled by 

Western and Miller and published by the Royal Society at Cambridge University in 1968. 
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I want to explain briefly how the index rules and a table of indices can be used to 
simplify calculations and solve congruences. For that purpose, here is a table of 
indices for the prime p = 37 and the base g = 2. 

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

l(a) 36 1 26 2 23 27 32 3 16 24 30 28 11 33 13 4 7 17 

a 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

l(a) 35 25 22 31 15 29 10 12 6 34 21 14 9 5 20 8 19 18 

Table of Indices Modulo 37 for the Base 2 

If we want to compute 23·19 (mod 37), rather than multiplying 23 and 19, we can 
instead add their indices. Thus, 

1(23 · 19) = 1(23) + 1(19) = 15 + 35 = 50 = 14 (mod 36). 

Note that the computation is done modulo p - 1, in this case, modulo 36. Looking 
at the table, we find that 1(30) = 14 and conclude that 23 · 19 _ 30 (mod 37). 

"Wait a minute," you are probably protesting, "using indices to compute the 
product 23 · 19 (mod 37) is lot of work." It would be easier to just multiply 23 
by 19, divide the product by 37, and take the remainder. There is a somewhat 
stronger case to be made for using indices to compute powers. For example, 

1(2914) = 14 · 1(29) - 14 · 21 294 = 6 (mod 36). 

From the table we see that 1(27) = 6, so 2914 27 (mod 37). Here the number 
2914 has 21 digits, so we wouldn't want to compute the exact value of 2914 by 
hand and then reduce modulo 37. On the other hand, we know how to compute 
2914 (mod 37) quite rapidly using the method of successive squares (Chapter 16). 
So are indices actually useful for anything? The answer is that the real power of a 
table of indices lies not in its use for direct computations, but rather as a tool for 
solving congruences. We give two illustrations. 

For our first example, consider the congruence 

l9x _ 23 (mod 37). 

If x is a solution, then the index of 19x is equal to the index of 23. Using the 
product rule and taking values from the table of indices, we can compute 

l(l9x) = 1(23) 

1(19) + l(x) 1(23) (mod 36) 

35 + l(x) 15 (mod 36) 

l(x) = -20 = 16 (mod 36). 
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Thus, the index of the solution is l(x) = 16, and looking again at the table, we find 

that x _ 9 (mod 37) . You should compare this solution of 19x _ 23 (mod 37) 
with the more cumbersome method described in Chapter 8. Of course, the index 

method won't work unless you have a table of indices already compiled, so the 

Linear Congruence Theorem in Chapter 8 is certainly not obsolete. 

For our second example we'll solve a problem that until now would have re

quired a great deal of tedious computation. We ask for all solutions to the congru-

ence 

3x30 = 4 (mod 37) . 

We start by taking the index of both sides and using the product and power rules. 

1(3x30) = 1( 4) 

1(3) + 301(x) = 1( 4) (mod 36) 

26 + 301(x) - 2 (mod 36) 

301(x) - -24 - 12 (mod 36) . 

So we need to solve the congruence 30l(x) _ 12 (mod 36) for l(x) . [Warning: 

Do not divide both sides by 6 to get 51(x) _ 2 (mod 36) , you'll lose some of the 

answers.] We saw in Chapter 8 how to solve a congruence of this sort. In general, 

the congruence ax - c (mod m) has gcd(a, m) solutions if gcd(a, m ) divides c, 

otherwise it has no solutions. In our case gcd(30, 36) = 6 does divide 12, so there 

should be six solutions. Using the methods of Chapter 8, or just by trial and error, 

we find that 

301(x) - 12 (mod 36) 

for 

l(x) - 4, 10, 16, 22, 28, and 34 (mod 36) . 

Finally, we look back at the table of indices to get the corresponding values of x, 

1(16) = 4, 

1(21) = 22, 

1(25) = 10, 

1(12) = 28, 

1(9) = 16, 

1(28) = 34. 

Thus, the congruence 3x30 = 4 (mod 37) has six solutions, 

x _ 16, 25, 9, 21, 12, 28 (mod 37) . 

The computational advantages of using indices are easily stated. The index 

rules convert multiplication into addition and exponentiation into multiplication. 
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This undoubtedly sounds familiar, since it is exactly the same as the rules satisfied 
by logarithms: 

log( ab) = log( a) + log(b) and log(ak) = klog(a). 

For this reason, the index is also known as the discrete logarithm. And just as log
arithm tables were used to do computations in days of yore before the proliferation 
of inexpensive calculators, tables of indices were used for computations in num
ber theory. Nowadays, with the availability of desktop computers, index tables are 
used less frequently for numerical computations, but indices retain their usefulness 
as a theoretical tool. 

Indeed, in the past few decades the theory of indices has enjoyed a renaissance 
due to its applicability to cryptography, although in the cryptographic community, 
indices are almost always called discrete logarithms. Suppose that you are given a 
large prime number p and two numbers a and g modulo p. The Discrete Logarithm 

Problem (DLP) is the problem of finding the exponent k such that 

gk =a (mod p). 

In other words, the discrete logarithm problem asks you to find the index of a 
modulo p for the base g. As we saw in Chapter 16, it is relatively easy to compute 
gk (mod p) if you know g and k. However, if p is large, it is quite difficult to 
find the value of k if you're given the value of gk (mod p). This dichotomy can 
be used to construct public key cryptosystems, much in the way that we used the 
difficulty of factoring numbers to construct the RSA cryptosystem in Chapter 18. 

Exercise 29.6 contains a description of a discrete logarithm-based cryptosystem 
called the ElGamal cryptosystem. 

Exercises 

29.1. Use the table of indices modulo 37 to find all solutions to the following congruences. 

(a) 12x - 23 (mod 37) (c) x12 - 11 (mod 37) 
(b) 5x23 18 (mod 37) (d) 7x20 34 (mod 37) 

29.2. (a) Create a table of indices modulo 17 using the primitive root 3. 
(b) Use your table to solve the congruence 4x 11 (mod 17). 
(c) Use your table to find all solutions to the congruence 5x6 7 (mod 17). 

29.3. (a) If a and b satisfy the relation ab - 1 (mod p), how are the indices J(a) and J(b) 
related to one another? 

(b) If a and b satisfy the relation a + b 0 (mod p), how are the indices I (a) and I ( b) 
related to one another? 
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(c) If a and b satisfy the relation a+ b - 1 (mod p), how are the indices J(a) and J(b) 
related to one another? 

29.4. (a) If k divides p - 1, show that the congruence x
k

distinct solutions modulo p. 
(b) More generally, consider the congruence 

x
k a (mod p). 

1 (mod p) has exactly k

Find a simple way to use the values of k, p, and the index J(a) to determine how

many solutions this congruence has. 

( c) The number 3 is a primitive root modulo the prime 198 7. How many solutions are

there to the congruence x111 729 (mod 1987)? [Hint. 729 = 36.] 

29.5. H Write a program that takes as input a prime p, a primitive root g for p, and a

number a, and produces as output the index J(a). Use your program to make a table of

indices for the prime p = 47 and the primitive root g = 5. 

29.6. In this exercise we describe a public key cryptosystem called the ElGamal Cryp

tosystem that is based on the difficulty of solving the discrete logarithm problem. Let p be

a large prime number and let g be a primitive root modulo p. Here's how Alice creates a

key and Bob sends Alice a message. 

The first step is for Alice to choose a number k to be her secret key. She computes the 

number a gk (mod p). She publishes this number a, which is the public key that Bob

(or anyone else) will use to send her messages. 

Now suppose that Bob wants to send Alice the message m, where m is a number 

between 2 and p - 1. He randomly chooses a number r and computes the two numbers

and 

Bob sends Alice the pair of numbers ( ei, e2) .

Finally, Alice needs to decrypt the message. She first uses her secret key k to com

pute c - e� (mod p). Next she computes u c-1 (mod p). [That is, she solves cu

1 (mod p) for u, using the method in Chapter 8.] Finally, she computes v ue2 (mod p ) .

We can summarize Alice's computation by the formula 

v = e2 · (e�)-1 (mod p). 

(a) Show that when Alice finishes her computation the number v that she computes 

equals Bob's message m. 

(b) Show that if someone knows how to solve the discrete logarithm problem for the 

prime p and base g then he or she can read Bob's message.

29.7. il For this exercise, use the ElGamal cryptosystem described in Exercise 29.6.

(a) Bob wants to use Alice's public key a = 22695 for the prime p = 163841 and base

g = 3 to send her the message m = 39828. He chooses to use the random number

r = 129381. Compute the encrypted message (e1, e2) he should send to Alice.
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(b) Suppose that Bob sends the same message to Alice, but he chooses a different value 

for r. Will the encrypted message be the same? 

(c) Alice has chosen the secret key k = 278374 for the prime p = 380803 and the base 

g = 2. She receives a message (consisting of three message blocks)

( 617 45, 206881)' (255836, 314674), (108147, 350768) 

from Bob. Decrypt the message and convert it to letters using the number-to-letter 

conversion table in Chapter 18. 



Chapter 30 

The Equation X4 + Y4 z4 

Fermat's Last Theorem says that if n > 3, then the equation

has no solutions in positive integers x, y, and z. Fermat scribbled this statement 

in the margin of his copy of Diophantus' Arithmetica sometime during the middle 

of the seventeenth century, but it wasn't until the end of the twentieth century that 

Andrew Wiles gave the first definitive proof. In this chapter we describe Fermat's 

proof for the particular exponent n = 4. In fact, we prove the following stronger 

statement. 

Theorem 30.1 (Fermat's Last Theorem for Exponent 4). The equation 

x4 + y4 = z2 

has no solutions in positive integers x, y, and z. 

Proof We use Fermat's method of descent to prove this theorem. Recall that the 

idea of "descent," as used in Chapter 24 to write a prime as a sum of two squares, 

is to descend from a large solution to a small solution. How does that help us in 

this instance, since we're trying to show that there aren't any solutions at all? 

What we do is to suppose that there is a solution ( x, y, z) in positive integers,

and we use this supposed solution to produce a new solution ( X, Y, Z) in positive 

integers with Z < z. Repeating this process, we would end up with a never-ending

list of solutions 

with z1 > z2 > z3 > · · · . 

This is, of course, completely absurd, since a decreasing list of positive integers 

can't continue indefinitely. The only escape from this absurdity lies in our original 
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assumption that there is a solution. In other words, this contradiction shows that 

no solutions exist. 

Now for the nitty-gritty details. We assume that we are given a solution ( x, y, z) 
to the equation 

x4 + y4 = z2, 

and we want to find a new smaller solution. If x, y, and z have a common factor, 

then we can factor it out and cancel it, so we may as well assume that they are 

relatively prime. Next, we observe that if we let a = x2, b = y2, and c = z 
then (a, b, c) is a primitive Pythagorean triple, 

We know from Chapter 2 what all primitive Pythagorean triples look like. Possibly 

after switching x and y, there are odd integers sand t such that 

x2 =a= st ' 
2 s2 - t2 

y =b= 
2 ' 

s2 + t2 
z=c= 

2 

Notice that the product st is odd and equal to a square and that the only squares 

modulo 4 are 0 and 1, so we must have 

st= 1 (mod 4). 

This means that s and t are either both 1 modulo 4 or both 3 modulo 4. In any case, 

we see that 

s _ t (mod 4). 

Next we look at the equation 

2y2 = s2 - t2 = ( s - t) ( s + t) . 

The fact thats and tare odd and relatively prime means that the only common fac

tor of s - t and s + t is 2. We also know that s - t is divisible by 4, so s + t must 

be twice an odd number. Furthermore, we know that the product ( s - t) ( s + t) is 

twice a square. The only way this can happen is if we have 

s + t = 2u2 and s - t = 4v2 

for some integers with u and 2v relatively prime. 

We solve for sand tin terms of u and v, 

s = u2 + 2v2 and t = u2 - 2v2, 
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and substitute into the formula x2 = st to get 

x2 = u4 -4v4. 

This can be rearranged to read 

x2 + 4v4 = u4. 

233 

Unfortunately, this isn't quite the equation we're looking for, so we repeat the 

process. If we let A = x, B = 2v2, and C = u 2, then 

A2 + B2 = 02 , 

so (A, B, C) is a primitive Pythagorean triple. Again referring to Chapter 2, we 

can find odd relatively prime integers Sand Tso that 

x =A= ST ' 

2 32 -T2 
2v =B= ---

2 
' 

The middle formula says that 

2 32 + T2 
u =C= ---

2 

4v2 = 82 -T2 = ( S -T) ( S + T) . 

Now S and T are odd and relatively prime, so the greatest common divisor of 

S -T and S +Tis 2. Furthermore, their product is a square, so it must be true 

that 

S +T = 2X2 and S-T = 2Y 2 

for some numbers X and Y. Solving for S and T in terms of X and Y gives 

s = x2 + y 2 and T- X2 -y 2 - ' 

and then substituting into the formula for u2 yields 

32 +T2 
u2= ---

2 

(X2 + y2)2 + (X2 _ y2)2 
_________ = x4 + y 4. 

2 

Voila! We have a new solution (X, Y, u) to our original equation 

x4 + y4 = z 2. 

It only remains to verify that the new solution is smaller than the original one. 

Using various formulas from above, we find that 

32 + t2 
z= 

2 

( u2 + 2v2) 2 + ( u2 -2v2) 2 
----------= u4 + 4v4. 

2 

This makes it clear that u is smaller than z. D 



[Chap. 30] The Equation X4 + Y4=Z4
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30.1. Show that the equation y2 = x3 + xz4 has no solutions in nonzero integers x, y, z. 
[Hint. Suppose that there is a solution. First show that it can be reduced to a solution
satisfying gcd(x, z) = 1. Then use the fact that x3 + xz4 = x(x2 + z4) is a perfect square
to show that there are no solutions other than x = y = 0.] 

30.2. A Markoff triple is a triple of positive integers (x, y, z) that satisfies the Markoff
equation 

x2 + y2 + z2 = 3xy z. 

There is one obvious Markoff triple, namely (1, 1, 1). 
(a) Find all Markoff triples that satisfy x = y. 
(b) Let ( x0, y0, z0) be a Markoff triple. Show that the following are also Markoff triples:

F(xo, Yo, zo) = (xo, zo, 3xozo - Yo),

G(xo, Yo, zo) = (yo, zo, 3yozo - xo), 
H(xo, Yo, zo) = (xo, Yo, 3XoYo - zo).

This gives a way to create new Markoff triples from old ones. 

(c) Starting with the Markoff triple (1, 1, 1), repeatedly apply the functions F and G 
described in (b) to create at least eight more Markoff triples. Arrange them in a 
picture with two Markoff triples connected by a line segment if one is obtained from 
the other by using F or G. 

30.3. This exercise continues the study of the Markoff equation from Exercise 30.2. 
(a) It is clear from the form of the Markoff equation that if (x0, y0, z0) is a Markoff

triple, then so are all of the triples obtained by permuting its coordinates. We say that 
a Markoff triple ( x0, y0, z0) is normalized if its coordinates are arranged in increasing
order of magnitude, 

xo :S Yo < zo. 

Prove that if (xo, Yo, zo) is a normalized Markoff triple, then both F(xo, yo, zo) and

G ( xo, Yo, zo) are normalized Markoff triples.

(b) The size of a Markoff triple (x0, y0, z0) is defined to be the sum of its coordinates,

size(xo, Yo, zo) = xo +Yo+ zo. 

Prove that if ( x0, y0, z0) is a normalized Markoff triple, then

size(xo, Yo, zo) < sizeF(xo, Yo, zo), 

size(xo, yo, zo) < size G(xo, Yo, zo), 

size(xo, Yo, zo) >size H(xo, yo, zo). 

[Hint. For the inequality for H, use the quadratic formula to solve the Markoff equa
tion for zo in terms of xo and yo. Show that the assumption xo < Yo < zo forces us
to take the plus sign in the quadratic formula.] 
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(c) Prove that every Markoff triple can be obtained by starting with the Markoff triple 

(1, 1, 1) and repeatedly applying the functions F and G. [Hint. If (x0, y0, z0) is a 

normalized Markoff triple not equal to ( 1, 1, 1) or ( 1, 1, 2), apply the map H and 

rearrange the coordinates to get a normalized Markoff triple ( x1, y1, z1) of strictly 

smaller size such that one of F(x1, Y1, z1) or G(x1, Y1, z1) is equal to (xo, Yo, zo).] 



Chapter 31 

Square-Triangular Numbers 
Revisited 

Some numbers are "shapely" in that they can be laid out in some sort of regular 

shape. For example, a square number n 2 can be arranged in the shape of an n

by-n square. Similarly, a triangular number is a number that can be arranged in 

the shape of a triangle. The following picture illustrates the first few triangular and 

square numbers (other than 1). 
• 

• • 

1+2=3 

• • 

• • 

22 = 4 

• 

• • 

• • • 

1+2+3= 6 
Triangular Numbers 

• • • 

• • • 

• • • 

32 = 9 

Square Numbers 

Triangular numbers are thus formed by adding 

• 

• • 

• • • 

• • • • 

1+2 + 3 + 4 = 10 

• • • • 

• • • • 

• • • • 

• • • • 

42 = 16 

1+2+3+···+m 

for different values of m. We found a formula for the mth triangular number in

Chapter 1, 
m(m + 1) 

1+2+3+···+m= . 
2 
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Here's a list of the first few triangular and square numbers. 

Triangular Numbers 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105 

Square Numbers 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169 
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In Chapter 1 we posed the question of "Squaring the Triangle," that is, finding 

square numbers that are also triangular numbers. Even our short list reveals two 

examples, 1 (which isn't very interesting) and 36. This means that 36 pebbles 

can be arranged in the shape of a 6-by-6 square, and they can also be arranged in 

the shape of a triangle with 8 rows. An exercise in Chapter 1 asked you to find 

one or two more examples of these square-triangular numbers and to think about 

the question of how many there are. Using the mathematical sophistication we've 

gained in the subsequent chapters, we're now going to develop a method for finding 

all square-triangular numbers. 

Triangular numbers look like m(m + 1)/2 and square numbers look like n2, 
so square-triangular numbers are solutions to the equation 

2 m(m+l) 
n = ----

2 

with positive integers n and m. If we multiply both sides by 8, we can do a little 

algebra to get 

8n2 = 4m2 + 4m = (2m + 1 )2 -1. 

This suggests that we make the substitution 

x = 2m + 1 and y = 2n 

to get the equation 

2y2 = x2 -1, 

which we rearrange into the form 

x2 -2y2 = l. 

Solutions to this equation give square-triangular numbers with 

x-l 
and 

y 
n= - . 

2 
m= --

2 

By trial and error we notice one solution, ( x, y) = ( 3, 2), which gives the 

square-triangular number ( m, n) = ( 1, 1). With a little more experimentation 

(or using the fact that 36 is square-triangular), we find another solution (x, y) = 
( 1 7, 12) corresponding to ( m, n) = ( 8, 6). Using a computer, we can search 
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for more solutions by substituting y = 1, 2, 3, ... and checking if 1 + 2y2 is a 

square. The next solution found is ( x, y) = ( 99, 70), which gives us a new square

triangular number with (m, n) = ( 49, 35). In other words, 1225 is a square

triangular number, since 

352 = 1225 = 1 + 2 + 3 + ... + 48 + 49. 

What tools can we use to solve the equation 

x2 - 2y2 = 1? 

One method we've used repeatedly in the past is factorization. Unfortunately, 

x2 - 2y2 does not factor if we stay within the realm of whole numbers; but if 

we expand our horizons a little, it does factor as 

For example, our solution ( x, y) = ( 3, 2) can be written as 

Now see what happens if we square the left- and right-hand sides of this equa

tion. 

1 = 12 = ( 3 + 2V2) 2 ( 3 - 2V2) 2 

= ( 17 + 12V2) ( 17 - 12V2) 
= 172 - 2 . 122 

So by "squaring" the solution ( x, y) = ( 3, 2), we have constructed the next solution 

(x, y) = (17, 12). 
This process can be repeated to find more solutions. Thus, cubing the ( x, y) = 

( 3, 2) solution gives 

1 = 13 
= ( 3 + 2V2) 3 ( 3 - 2V2) 3 

= ( 99 + 1oh) ( 99 - 1oh) 
= 992 - 2 . 702 ' 
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and taking the fourth power gives 

1 = 14 = (3 + 2v0) 4 (3- 2v0) 4 

= ( 577 + 408v0) ( 577 - 408v0) 
= 5772 - 2. 4082. 
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Notice that the fourth power gives us a new square-triangular number, (m, n) = 

(288, 204). When doing computations of this sort, it's not necessary to raise the 

original solution to a large power. Instead, we can just multiply the original solution 

by the current one to get the next one. Thus, to find the fifth-power solution, we 

multiply the original solution 3 + 2y'2 by the fourth-power solution 577 + 408v'2. 
This gives 

( 3 + 2v0) ( 577 + 408v0) = 3363 + 237sv0, 

and from this we read off the fifth-power solution (x, y) = (3363, 2378). Contin

uing in this fashion, we can construct a list of square-triangular numbers. 

x y m n n2 = 

m(m + 1) 
2 

3 2 1 1 1 

17 12 8 6 36 

99 70 49 35 1225 

577 408 288 204 41616 

3363 2378 1681 1189 1413721 

19601 13860 9800 6930 48024900 

114243 80782 57121 40391 1631432881 

665857 470832 332928 235416 55420693056 

As you see, these square-triangular numbers get quite large. 

By raising 3 + 2v'2 to higher and higher powers, we can find more and more 

solutions to the equation 

x2 - 2y2 = 1, 

which gives us an inexhaustable supply of square-triangular numbers. Thus, there 

are infinitely many square-triangular numbers, which answers our original ques

tion, but now we ask if this procedure actually produces all of them. The answer is 

that it does, and you won't be surprised to learn that we use a descent argument to 

verify this fact. 
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Theorem 31.1 (Square-Triangular Number Theorem). (a) Every solution in pos-

itive integers to the equation 

x2 - 2y2 = 1 

is obtained by raising 3 + 2v'2 to powers. That is, the solutions (xk, Yk) can all be 

found by multiplying out 

fork = 1, 2, 3, ... . 

(b) Every square-triangular number n2 = �m(m + 1) is given by 

Xk -1 
m= 2 

Yk 
n= -2 fork = 1, 2, 3, ... , 

where the (xk, Yk) 's are the solutions from (a). 

Proof The only thing we have left to check is that if ( u, v)  is any solution to 

x2 - 2y2 = 1, then it comes from a power of the solution (3, 2). In other words, 

we must show that 

for some k. 

We prove this by the method of descent. Here's the plan. If u = 3, then we must 

have v = 2, so there's really nothing to check. So we suppose that u > 3, and we 

show that there is then another solution ( s, t) in positive integers such that 

and s < u. 

W hy does this help? Well, if (s, t) = (3, 2), then we're done; otherwise, s 

must be larger than 3, so we can do the same thing starting from ( s, t) to find a new 

solution ( q, r) with 

s + tv'2 = ( 3 + 2v'2) ( q + rv'2) and q < s. 

This means that 

u + vV'i = ( 3 + 2v'2) 2 ( q + rv'2) . 
Now if (q, r) = (3, 2), we're done, and if not, then we apply the procedure yet 

again. Continuing in this fashion, we observe that this process cannot go on forever, 

since each time we get a new solution, the value of x is smaller. But these values 

are all positive integers, so they cannot keep getting smaller indefinitely. Therefore, 
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eventually we get (3, 2) as a solution, which means that eventually we end up with 

u + vv'2 written as a power of 3 + 2v'2. 

So now we begin with a solution ( u, v) with u > 3, and we are looking for a 

solution ( s, t) with the property 

and s < u. 

Multiplying out the right-hand side of the equation, we need to solve 

u + vv0 = (3s + 4t) + (2s + 3t)V2 

for sand t. In other words, we need to solve 

u = 3s + 4t and v = 2s + 3t. 

This is done easily, the answer being 

s = 3u - 4v and t = -2u + 3v. 

Let's check that this (s, t) really gives a solution. 

s2 - 2t2 = (3u - 4v)2 - 2(-2u + 3v)2 

= (9u2 - 24uv + 16v2) - 2( 4u2 -12uv + 9v2) 

= u2 - 2v2 

=1 

since we know that ( u, v) is a solution. So that's fine. There are two more things 

we need to check. First, we need to check that s and t are both positive. Second, 

we must verify that s < u, since we want the new solution to be "smaller" than the 

original solution. 

It's easy to see thats is positive using the fact that 

Then 

u2 = 1 + 2v2 > 2v2, which tells us that u > v'2 v. 

s = 3u - 4v > 3V2 v - 4v = ( 3V2 - 4) v > 0, 

since 3v'2 � 4.242 is greater than 4. 
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The proof that tis positive is a little trickier. Here's one way to do it: 

u>3 

u2 > 9 

9u2 > 9 + 8u2 

9u2 - 9 > 8u2 

u2 - 1 > §.u2 
9 

2v2 > fiu2 
9 

v > :J.u 
3 

We assumed this. 

Square both sides. 

Add 8u2 to both sides. 

Move the 9 to the other side. 

Divide both sides by 9. 

Since we know that u 2 - 2v2 = 1. 

Divide by 2 and take square roots. 

Using this last inequality, it is now easy to check that t is positive. 

2 
t = -2u + 3v > -2u + 3 · -u = 0. 

3 
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We now know that s and t are positive, from which it follows that s < u, since 
u = 3s + 4t. This completes our proof that the descent process works and thus 
completes our proof of the Square-Triangular Number Theorem. D 

The Square-Triangular Number Theorem says that every solution (xk, Yk) in 
positive integers to the equation 

x2 - 2y2 = 1 

can be obtained by multiplying out 

fork= 1, 2, 3, ... . 

The table at the beginning of this chapter makes it clear that the size of the solutions 
grows very rapidly ask increases. We'd like to get a more precise idea of just how 
large the kth solution is. To do this, we note that the preceding formula is still 
correct if we replace v'2 by -\!'2. In other words, it's also true that 

fork= 1, 2, 3, ... . 

Now if we add these two formulas together and divide by 2, we obtain a formula 
for Xk: 

Xk = 
(3 + 2y'2)

k 
+ (3 - 2\!'2)

k 

2 
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Similarly, if we subtract the second formula from the first and divide by 2v/2, we 

get a formula for Yk: 

These formulas for Xk and Yk are useful because 

3 + 2V2 � 5.82843 and 3 - 2V2 � 0.17157. 

The fact that 3 - 2v/2 is less than 1 means that when we take a large power of 

3 - 2v/2, we'll get a very tiny number. For example, 

( 3 - 2V2) 10 
� 0.0000000221, 

so 

(3 2v/2) 
10 

+ 
2 

� 22619536.99999998895 and 

(3 2v/2) 
10 

+ V2 "" 15994428.000000007815. 
2 2 

But we know that x10 and y10 are integers, so the 10th solution is 

(x10, Y10) = (22619537, 15994428). 

Using this we find that the 10th square-triangular number n2 = m (m + 1)/2 is 

given by 

n = 7997214 and m = 11309768. 

It's also apparent from the formulas for Xk and Yk why the solutions grow so 

rapidly, since 

and 
1 k 

Yk � /()" (5.82843) . 
2v2 

Thus, each successive solution is more than five times as large as the previous 

one. Mathematically, we say that the size of the solutions grows exponentially. 
Later, when we study elliptic curves in Chapter 41, we'll see some equations whose 

solutions grow even faster than this! 
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Exercises 

31.1. Find four solutions in positive integers to the equation 

x2 - 5y2
= 1. 
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[Hint. Use trial and error to find a small solution (a, b) and then take powers of a+ bJ5.] 
31.2. (a) In Chapters 24 and 25 we studied which numbers can be written as sums of two

squares. Compile some data and try to make a conjecture as to which numbers can 
be written as sums of (one or) two triangular numbers. For example, 7 = 1 + 6 and
25 = 10 + 15 are sums of two triangular numbers, while 19 is not.

(b) Prove that your conjecture in (a) is correct.

( c) Which numbers can be written as sums of one, two, or three triangular numbers?

31.3. (a) Let (xk, Yk) fork = 0, 1, 2, 3, ... be the solutions to x2 - 2y2
= 1 described

in Theorem 31.1. Fill in the blanks with positive numbers such that the following
formulas are true. Then prove that the formulas are correct. 

and 

(b) Fill in the blanks with positive numbers such that the following statement is true:
If ( m, n) gives a square-triangular number, that is, if the pair ( m, n) satisfies the
formula n2

= m(m + 1)/2, then

(1 +_m+_n, 1 +_m+_n) 

also gives a square-triangular number. 

(c) If L is a square-triangular number, explain why 1 + 17 L + 6J L + 8L2 is the next
largest square-triangular number. 

31.4. A number n is called a pentagonal number if n pebbles can be arranged in the
shape of a (filled in) pentagon. The first four pentagonal numbers are 1, 5, 12, and 22, as
illustrated in Figure 31.l. You should visualize each pentagon as sitting inside the next
larger pentagon. The nth pentagonal number is formed using an outer pentagon whose
sides have n pebbles .

. oG 
1 5 12 22 

Figure 31.1: The First Four Pentagonal Numbers 

(a) Draw a picture for the fifth pentagonal number.

(b) Figure out the pattern and find a simple formula for the nth pentagonal number.

(c) What is the 10th pentagonal number? What is the lOOth pentagonal number?



Chapter 32 

Pell's Equation 

In the last chapter we gave a complete description of the solutions to the equation 

x2 - 2y2
= 1 in positive integers x and y. 

This is an example of what is called a Pell equation, which is an equation of the 

form 

x2 - Dy2
= 1, 

where D is a fixed positive integer that is not a perfect square. 

Pell' s equation has a long and fascinating history. Its first recorded appearance 

is in the "Cattle problem of Archimedes." This problem involves eight different 

kinds of cattle and asks the reader to determine how many there are of each kind. 

Various linear relations are given, together with two nonlinear conditions, one spec

ifying that a certain quantity is a square and the other saying that a certain quantity 

is a triangular number. After a lot of algebra, the problem finally reduces to solving 

the Pell equation 

x2 - 4 729494y2
= 1. 

The y coordinate of the smallest solution, which was first determined by Amthor 

in 1880, has 41 digits, and then the answer to the original cattle problem has hun

dreds of thousands of digits! It seems unlikely that Archimedes or his contem

poraries could have determined the solution, but it is fascinating that they even 

thought to pose such a problem. 

Fast-forwarding through the centuries, the first significant progress in solv

ing Pell's equation was made in India. As early as AD 628, Brahmagupta de

scribed how to use known solutions to Pell' s equation to create new solutions, 

and in AD 1150 Bhaskaracharya gave an ingenious method, with a surprisingly 

modem flavor, for finding an initial solution. Unfortunately, this groundbreaking 
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work remained unknown in Europe until long after it had been rediscovered and 

superceded during the seventeenth century. 

Brahmagupta (598-670) One oflndia's most famous mathematicians of his 

era, Brahmagupta's best known work is the Brahmasphutasiddhanta (The 
Opening of the Universe) written in AD 628. This extraordinary book in

cludes a discussion of equations of the form x2 - Dy2 
= A, and in particu

lar "Pell's" equation x2 - Dy2 
= 1. Brahmagupta describes a composition 

method for creating new solutions from old ones, which he calls samasa, and 

he gives an algorithm that (sometimes) produces an initial solution. 

Approximately 500 years later the Indian mathematician Bhaskaracharya 

(AD 1114-1185) extended Brahmagupta's work on "Pell's" equation by de

scribing a method that uses an initial approximate solution to find a true solu

tion via repeated reductions. Bhaskaracharya called his method chakravala; 
today arguments of this type go by the name "Fermat descent." We saw ex

amples of Fermat descent in Chapters 24 and 30. Bhaskara illustrates his 

method by solving x2 - 6ly2 
= 1 more than 500 years before Fermat used 

this equation to issue a challenge. 

The modem European history of Pell's equation begins in 1657 when Fermat 

challenged his fellow mathematicians to solve the equation x2 - 61y2 = 1. Sev

eral of them found the smallest solution, which is 

(x, y) = (1766319049, 226153980), 

and in 1657 William Brouncker described a general method for solving Pell's equa

tion. Brouncker demonstrated the efficiency of his method by finding, in just a 

couple of hours, the smallest nontrivial solution 

(32188120829134849,1819380158564160) 

to the equation 

x2 - 313y2 = 1 

J. Wallis described Brouncker's method in a book on algebra and number theory, 

and Wallis and Fermat both asserted that Pell's equation always has a solution. 

Euler mistakenly thought that the method in Wallis's book was due to John Pell, 

another English mathematician, and it is Euler who assigned the equation the name 

by which it has since been known. Of such misapprehensions is mathematical 

immortality attained! 1 

1 Some are born great, some achieve greatness, and some have mathematical greatness thrust 

upon them. With the benefit of historical hindsight, a better name for "Pell's equation" might be the 

"B3 equation," in honor of the three mathematicians Brahmagupta, Bhaskaracharya, and Brouncker. 
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Suppose that we are able to find a solution (xi, Yi) to the Pell equation 

x2 -Dy2 = 1. 
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Then we can produce new solutions using the same method described in the last 

chapter for D = 2. Factoring the known solution as 

we square both sides to get a new solution 

1 = 12 = ( x1 + Yl VJ5) 2 ( x1 -Yi VJ5) 2 

=((xi +yiD) +2xiyiVD) ((xi +yiD)-2x1y1VD) 
= (xi +Yi D)2 -(2xiyi)2 D. 

In other words, (xi+ Yt D, 2xiy1) is a new solution. Taking the third power, 

fourth power, and so on, we can continue to find as many more additional solu

tions as we desire. 

This leaves two vexing questions. First, does every Pell equation have a so

lution? Note that this question didn't arise when we studied the Pell equation 

x2 -2y2 = 1, since for this specific equation it was easy to find the solution (3, 2). 
Second, assuming that a given Pell equation does have a solution, is it true that ev

ery solution can be found by taking powers of the smallest solution? For the equa

tion x2 -2y2 = 1 we showed that this is true; every solution comes from powers 

of 3 + 2J2. The answers to both of these questions are given in the following 

theorem. 

Theorem 32.1 (Pell's Equation Theorem). Let D be a positive integer that is not 

a perfect square. Then Pell's equation 

x2 -Dy2 = 1 

always has solutions in positive integers. If (xi, Yi) is the solution with smallest x1, 
then every solution (xk, Yk) can be obtained by taking powers 

xk+YkVD= (xi+YiVD)
k 

fork= 1, 2, 3, .... 

For example, the smallest solution to the Pell equation 

x2 -47y2 = 1 
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is ( x, y) = ( 48, 7). Then all solutions can be obtained by taking powers of 

48 + 7 J47. The second and third smallest solutions are 

( 48 + 7v'47) 2 = 4607 + 672J47 and 

( 48 + 7 J47) 3 = 442224 + 64505v'47. 

The second part of Pell's Equation Theorem, which says that every solution to 

Pell's equation is a power of the smallest solution, is actually not too difficult to 

verify. It can be proved for arbitrary values of D in much the same way that we 

proved it for D = 2 in the previous chapter. The first part, however, which asserts 

that there is always at least one solution, is somewhat more difficult. We postpone 

the proof of both parts until Chapter 34. 

Table 32.1 lists the smallest solution to Pell's equation for all D up to 75. As 

you can see, sometimes the smallest solution is quite small. For example, the 

equation x2 - 72y2 = 1 has the comparatively tiny solution (17, 2), as does the 

equation x2 - 75y2 = 1 with small solution (26, 3). On the other hand, sometimes 

the smallest solution is huge. Striking examples in the table include 

and 

x2 - 6ly2 = 1 with smallest solution (1766319049, 226153980), 

x2 - 73y2 = 1 with smallest solution (2281249, 267000). 

Another example of this phenomenon is given by 

x2 - 97y2 = 1 with smallest solution (62809633, 6377352), 

and of course there's the equation x2 - 313y2 = 1, already mentioned, which has 

a similarly spectacular smallest solution. 

There is no known pattern as to when the smallest solution is actually small 

and when it is large. It is known that the smallest solution ( x, y) to x2 - Dy2 = 1 
is no larger than x < 2D, but obviously this is not a very good estimate. 2 Maybe 

you'll be able to discern a pattern that no one else has noticed and use it to prove 

hitherto unknown properties of the solutions to Pell's equation. 

2There is a more precise bound for the smallest solution ( x, y) that is due to C. L. Siegel. He 

showed that for each D there is a positive integer h such that the number h · log(x + yy'D) has the 

same order of magnitude as v'D. In particular, log( x) and log(y) won't be much larger than some 

multiple of v'D. So, for x and y to be small, this mysterious number h (which is called the class 
number for D) needs to be large. There are many unsolved problems concerning the class number, 

including the famous conjecture that there are infinitely many D's whose class number equals 1. 
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D x y D x y D x y 

1 - - 26 51 10 51 50 7 
2 3 2 27 26 5 52 649 90 
3 2 1 28 127 24 53 66249 9100 
4 - - 29 9801 1820 54 485 66 
5 9 4 30 11 2 55 89 12 
6 5 2 31 1520 273 56 15 2 
7 8 3 32 17 3 57 151 20 
8 3 1 33 23 4 58 19603 2574 
9 - - 34 35 6 59 530 69 

10 19 6 35 6 1 60 31 4 
11 10 3 36 - - 61 1766319049 226153980 
12 7 2 37 73 12 62 63 8 
13 649 180 38 37 6 63 8 1 
14 15 4 39 25 4 64 - -

15 4 1 40 19 3 65 129 16 
16 - - 41 2049 320 66 65 8 
17 33 8 42 13 2 67 48842 5967 
18 17 4 43 3482 531 68 33 4 
19 170 39 44 199 30 69 7775 936 
20 9 2 45 161 24 70 251 30 
21 55 12 46 24335 3588 71 3480 413 
22 197 42 47 48 7 72 17 2 
23 24 5 48 7 1 73 2281249 267000 
24 5 1 49 - - 74 3699 430 
25 - - 50 99 14 75 26 3 

Table 32.1: The Smallest Solution to the Pell Equation x2 - Dy2 = 1 

Exercises 

32.1. A Pell equation is an equation x2 - Dy2 
= 1, where D is a positive integer that is

not a perfect square. Can you figure out why we do not want D to be a perfect square? 

Suppose that D is a perfect square, say D = A 2. Can you describe the integer solutions of

the equation x2 - A 2y2 
= 1?

32.2. Find a solution to the Pell equation x2 - 22y2 
= 1 whose x is larger than 106• 

32.3. Prove that every solution to the Pell equation x2 - lly2 
= 1 is obtained by taking

powers of 10 + 3VIT. (Do not just quote the Pell Equation Theorem. I want you to

give a proof for this equation using the same ideas that we used to handle the equation 

x2 - 2y2 
= 1 in Chapter 31.)
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32.4. We continue our study of the pentagonal numbers described in Exercise 31.4. 

(a) Are there any pentagonal numbers (aside from 1) that are also triangular numbers? 

Are there infinitely many? 

(b) Are there any pentagonal numbers (aside from 1) that are also square numbers? Are 

there infinitely many? 

( c) Are there any numbers, aside from 1, that are simultaneously triangular, square, and 

pentagonal? Are there infinitely many? 



Chapter 33 

Diophantine Approximation 

How might we go about finding a solution to Pell's equation 

x2 - Dy2 = 1 

in positive integers x and y? The factorization

( x - yVD) ( x + yVD) = 1

expresses the number 1 as the product of two numbers, one of which is fairly large.

More precisely, the number x + yVJ5 is large, especially if x and y are large, so

the other factor 1 x - vVD = VDx+y D
must be rather small. 

We capitalize on this observation by investigating the following question: 

How small can we make x - yJ[5? 
If we can find integers x and y that make x - yVJ5 very small, we might hope

that x and y give a solution to Pell's equation.1 For the remainder of this chapter

we concentrate on giving Lejeune Dirichlet's beautiful solution to this problem. 

We return to Pell's equation in the next chapter. 

1 Unfortunately, as happens so often in life, our hopes are dashed when it turns out that x and y 

only give a solution to a "Pell-like" equation x2 - Dy2 
= M. Don't despair. Turning sorrow into

joy, we will be able to take two carefully chosen solutions to x2 - Dy2 
= M and transform them

miraculously into the sought after solution to x2 - Dy2
= 1.
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Let's begin with the easiest answer to our question. For any positive integer y, 
if we take x to be the integer closest to the number yVJ5, then the difference 

Ix - yVDI is at most � . 

This is true because any real number lies between two integers, so its distance to 
the nearest integer is at most ! . 

Can we do better? Here is a brief table for JI3. For each integer y from 1 
to 40, we have listed the integer x that is closest to yJI3, together with the values 
of Ix - yJI31 and x2 - 13y2. 

x y Ix - yVI31 x2 - 13y2 x y Ix - yVI31 x2 - 13y2 

4 1 0.394449 3.000 76 21 0.283423 43.000 

7 2 0.211103 -3.000 79 22 0.322128 -51.000 

11 3 0.183346 4.000 83 23 0.072321 12.000 

14 4 0.422205 -12.000 87 24 0.466769 81.000 

18 5 0.027756 -1.000 90 25 0.138782 -25.000 

22 6 0.366692 16.000 94 26 0.255667 48.000 

25 7 0.238859 -12.000 97 27 0.349884 -68.000 

29 8 0.155590 9.000 101 28 0.044564 9.000 

32 9 0.449961 -29.000 105 29 0.439013 92.000 

36 10 0.055513 -4.000 108 30 0.166538 -36.000 

40 11 0.338936 27.000 112 31 0.227910 51.000 

43 12 0.266615 -23.000 115 32 0.377641 -87.000 

47 13 0.127833 12.000 119 33 0.016808 4.000 

50 14 0.477718 -48.000 123 34 0.411257 101.000 

54 15 0.083269 -9.000 126 35 0.194295 -49.000 

58 16 0.311180 36.000 130 36 0.200154 52.000 

61 17 0.294372 -36.000 133 37 0.405397 -108.000 

65 18 0.100077 13.000 137 38 0.010948 -3.000 

69 19 0.494526 68.000 141 39 0.383500 108.000 

72 20 0.111026 -16.000 144 40 0.222051 -64.000 

Notice that Ix - yJI31 is always less than 1/2, just as we predicted. Some
times it is close to 1/ 2, as happens for y = 19 and y = 24, but sometimes it is 
much smaller. For example, there are four instances in the table for which it is 
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smaller than 0.05: 

(x, y) = (18, 5), 
(x, y) = (101, 28), 
(x, y) = (119, 33), 
(x, y) = (137, 38), 

I x - YVI31 = 0.021156, 
I x - yv1131 = 0.044564, 
I x - yv1131 = 0.016808, 
I x - yv1131 = 0.010948, 

x2 - 13y2 = -1, 
x2 - 13y2 = 9, 
x2 - 13y2 = 4, 
x2 - 13y2 = -3. 
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If we extend the table up to y = 200, we find that all the following pairs ( x, y) 
satisfy I x - yv'131 < 0.05: 

(18,5),(101,28),(119,33),(137,38),(155,43),(238,66),(256, 71), 
(274, 76), (292, 81), (375, 104), (393, 109), (411, 114), (494, 137), 

(512, 142), (530, 147), (548, 152), (631, 175), (649, 180), (667, 185). 

Do you see a pattern? Well, I don't either. 

Since there doesn't seem to be any obvious pattern, we take a different ap

proach to making I x - yv'131 small. The method that we use is called 

The Pigeonhole Principle 

This marvelous principle says that if you have more pigeons than pigeonholes, then 

at least one of the pigeonholes contains more than one pigeon!2 Although seem

ingly obvious and trivial, the proper application of this principle yields a bountiful 

mathematical harvest. 

What we are going to do is look for two different multiples Y1 VD and Y2 VD 
whose difference is very close to a whole number. To do this, we pick some large 

number Y and consider all the multiples 

oVD, 1 VD, 2VD, 3VD, ... , Y VD. 

We write each of these multiples as the sum of a whole number and a decimal 

2The Pigeonhole Principle, so called while residing in town, often Bunburies* in the country 
under the name of the Box Principle or the SchubfachschluB. The Box Principle asserts that if there 
are more objects than boxes, then some box contains at least two objects. Many consider Boxes 
to be dull when compared to Pigeonholes, while the Germanic SchubfachschluB sounds thoroughly 
respectable and, indeed, I believe is so.** 

* The art and artifice of Bunburying is fully explained by Algernon Montcrieff in Act I of Oscar Wilde's The Importance of Being Earnest. 

* * See Algernon's Aunt Augusta (ibid.) for more on the merits of the German language. 
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between 0 and 1, 

OVD = No + Fo with No = 0 and Fo = 0. 

1 VD= Ni+ Fi with Ni an integer and 0 <Fi < 1. 

2VD = N2 + F2 with N2 an integer and 0 < F2 < 1. 

3VD = N3 + F3 with N3 an integer and 0 < F3 < 1. 

Y VD = Ny + Fy with Ny an integer and 0 < Fy < 1. 
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Our pigeons are the Y + 1 numbers Fo, Fi, ... , Fy. All the pigeons are be

tween 0 and 1, so they are all sitting in the interval 0 < t < 1. We form Y 
pigeonholes by dividing up this interval into Y pieces of equal length. In other 

words, we take as pigeonholes the intervals 

Pigeonhole 1: 

Pigeonhole 2: 

Pigeonhole 3: 

Pigeonhole Y: 

O/Y < t < l/Y. 
l/Y < t < 2/Y. 
2/Y < t < 3/Y. 

(Y - 1)/Y < t < Y/Y. 

Each pigeon is roosting in one pigeonhole, and there are more pigeons than holes, 

so the Pigeonhole Principle assures us that some hole contains at least two pigeons. 

Figure 33.1 illustrates the pigeons and pigeonholes for D = 13 and Y = 5, where 

we see that Pigeon 0 and Pigeon 5 are both nesting in Pigeonhole 1. 

We now know that there are two pigeons, say pigeons Fm and Fn , that are in 

the same pigeonhole. We label these two pigeons so that m < n. Notice that 

the pigeonholes are quite narrow, only measuring 1/Y from side to side, so the 

distance between Fm and F n is less than 1 I y. In mathematical terms, 

Next we use the fact that 

and 

to rewrite this inequality as 
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Pigeon 0 Pigeon 1 Pigeon 2 Pigeon 3 Pigeon 4 Pigeon 5 
• &.\,; •) 

� � � � 
0.00000 0.60555 0.21110 0.81665 0.42221 0.02778 

Pigeonhole Pigeonhole Pigeonhole Pigeonhole Pigeonhole 

1 2 3 4 5 

0 0 0 0 
!<t<� �<t<� �<t<i 
5- 5 5- 5 5- 5 

0 

Figure 33.1: Pigeons and Pigeonholes for D = 13 and Y = 5 

Rearranging the terms on the left-hand side gives 

J (Nn - Nm) - (n - m) vn J < l/Y. 
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Note that the quantities Nn - Nm and n - m are (positive) integers. If we call 

them x and y, respectively, then we have accomplished our aim of making the 

quantity Ix - y-/DI quite small. 

Our final task is to estimate the size of the integer y = n - m. The numbers m 

and n were chosen so that among the pigeons Fo, F1, ... , Fy, the pigeons Fm 
and Fn are in the same hole. In particular, m and n are between 0 and Y, and since 

we chose them with n > m, we have 0 < m < n < Y. It follows that y satisfies 

O<y<Y. 

In summary, we have shown that for any integer Y, we can find integers x and y 
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such that 
0 < y < y and 

Furthermore, by taking Y larger and larger, we automatically get new x's and y's. 
This is true since for any fixed x and y the inequality 

is false when Y is large enough. 3 Finally, we make the trivial observation that 
1 / Y < 1 / y, which completes the proof of the following theorem of Dirichlet. 

Theorem 33.1 (Dirichlet's Diophantine Approximation Theorem). (Version 1) 
Suppose that D is a positive integer that is not a perfect square. Then there are 
infinitely many pairs of positive integers ( x, y) such that 

Ix -yVD I < l/y. 

We can use our table with D = 13 to illustrate Dirichlet's Diophantine Approx
imation Theorem. There are seven pairs of numbers ( x, y) in the table satisfying 
the inequality 

They are 

(4, 1), (7, 2), (11, 3), (18, 5), (36, 10), (119, 33), (137, 38). 

This looks like a lot, but such pairs are actually rather rare.4 If we were to extend 
the table up toy= 1000, we would find four more pairs: 

(256, 71), (393, 109), (649, 180), (1298, 360); 

and even if we go up to y = 5000, we only find an additional four pairs: 

(4287, 1189), (4936, 1369), (9223, 2558), (14159, 3927). 

There is an entire subject, called the theory of Diophantine Approximation, 
which deals with the approximation of irrational quantities by rational numbers. 

3We are implicitly using the fact that D is not a perfect square, since otherwise the quantity 

Jx - yVDJ could equal 0. 
40f course, in some sense such pairs are not rare, since there are infinitely many of them, and 

at first it seems nonsensical to call an infinitely available resource "rare." However, such pairs are 

extremely rare among the set of all pairs of whole numbers. This is similar to our observation in 

Chapter 13 that "most" numbers are composite numbers, despite the fact that there are also infinitely 

many prime numbers. 
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In Dirichlet's Diophantine Approximation Theorem, the irrational number VD 
is being approximated by the rational number x / y, since dividing both sides of 

Dirichlet's inequality by y gives 

x 
- VD < � · y y 

This shows clearly that if y is large, then x / y is extremely close to VD. 
If you look back at our proof of Dirichlet's Diophantine Approximation The

orem, you will see that we never really used the fact that VD is the square root 

of D. All we really needed to know was that VD is not itself a rational number. 

So what we really proved is the following much more general result . 

Theorem 33.2 (Dirichlet's Diophantine Approximation Theorem). (Version 2) 
Suppose that a > 0 is an irrational number. That is, a is a real number that is not 
a fraction a/b. Then there are infinitely many pairs of positive integers (x, y) such 
that 

1 
Ix -yal < 

-
. 

y 
For example, we could take a to be 

7r = 3.141592653589793238462643383 ... . 

The following table lists all the ( x, y) 's with y < 500 such that 

Ix - Y7rl < 1/y, 

together with the values of lx-y7rl · y and x/y. More precisely, since we're mainly 

interested in the ratio x/y, the table only lists pairs with gcd(x, y) = 1. 

x y Ix - Y7rl · Y x/y 

3 1 0.141593 3.0000000000 
19 6 0.902664 3.1666666667 
22 7 0.06 1960 3.142857 1429 

333 106 0.935056 3 .1415094340 
355 1 13 0.003406 3.1415929204 

Notice that the fractions 22/7 and 355/ 1 13 are especially close to Jr. They have 

been widely used in the past as approximations for 7r. We would have to extend 

our search considerably to find a better approximation, since it turns out that the 

next rational number close to 7r is 

103993 
= 3 1415926530 1 1903 

33 102 
. . ... 
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We have been using the brute force approach for finding rational approxima

tions to irrational numbers. For each y, we chose the integer x closest to ya and 

then checked to see how close x / y comes to a. There is a more systematic method 

for finding the best x/y's based on the theory of continued fractions. We will study 

continued fractions in Chapters 47 and 48, and you can read further about them 

in Davenport's The Higher Arithmetic or any standard text on elementary number 

theory. To illustrate the power of continued fractions, we mention that they can be 

used to find the rational numbers 

and 

���:��� = 3.141592653589815383 ... 

21053343141=3.1415926535897932384623817 ... 
6701487259 ' 

which approximate 7r to 13 and 21 decimal places, respectively. Clearly, we would 

not want to look for such examples using the brute force approach! Continued 

fractions also provide an efficient method for solving Pell's equation, even when 

the solution is extremely large. In the exercises you will see how the continued 

fraction method is used to find close rational approximations to a certain number 

called the Golden Ratio. 

Exercises 

33.1. Prove Version 2 of Dirichlet's Diophantine Approximation Theorem. 

33.2. The number 
1 + v'5 1 = 

2 
= 1.61803398874989 ... 

is called the Golden Ratio, a term often erroneously ascribed to the ancient Greeks. 

(a) For each y :S 20, find the integer x making Ix - Y11 as small as possible. Which 

rational number x / y with y :S 20 most closely approximates 1? 
(b) If you have access to a computer, find all pairs ( x, y) satisfying 

21 < y :S 1000, gcd(x, y) = 1, and Ix - Y11 < 1/y. 

Compare the values of x / y and 1 · 

(c) Find out why 1 is called the Golden Ratio, and write a paragraph or two explaining 

the mathematical significance of 1 and how it appears in art and architecture. 

33.3. Consider the following rules for producing a list of rational numbers. 

• The first number is r1 = 1. 
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• The second number is r2 = 1+1/r1 = 1+1/1 = 2.

• The third number is r3 = 1 + 1/r2 = 1 + 1/2 = 3/2.

• The fourth number is r4 = 1+1/r3 = 1 + 2/3 = 5/3.

In general, the nth number in the list is given by Tn = 1+1/rn-1· 
(a) Compute the values of r1, r2, ... , r10. (You should get r10 = 89/55.) 

(b) Let I= �(1 + vf5) be the Golden Ratio. Compute the differences 

as decimals. Do you notice anything? 
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(c) If you have a computer or programmable calculator, compute r20, r30, and r40 and
compare them with I· 

(d) Suppose that the numbers in the list r1, r2, r3, ... get closer and closer to some num
ber r. (In calculus notation, r = limn-too Tn.) Use the fact that Tn = 1+1/rn-1 to 
explain why r should satisfy the relation r = 1 + 1 / r. Use this to show that r = /,

thereby explaining your observations in (b) and (c). 
( e) Look again at the numerators and denominators of the fractions r1, r2, r3, . . . • Do 

you recognize these numbers? If you do, prove that they have the value that you 
claim. 

33.4. Dirichlet's Diophantine Approximation Theorem tells us that there are infinitely 
many pairs of positive integers (x, y) with Ix -yJ21 < 1/y. This exercise asks you to 
see if we can do better. 

(a) For each of the following y's, find an x such that Ix -yJ21 < 1/y: 

y = 12,17,29,41, 70,99,169,239,408,577,985,1393,2378,3363. 

(This list gives all the y's between 10 and 5000 for which this is possible.) Is the 
value of Ix -yJ21 ever much less than 1/y? Is it ever as small as 1/y2? A good way 
to compare the value of Ix -yJ21 with 1/y and 1/y

2 is to compute the quantities
y Ix -yJ2 1 and y2 Ix -yJ2 1 . Can you make a guess as to the smallest possible 
value of y lx -yJ21? 

(b) Prove that the following two statements are true for every pair of positive integers 
(x, y): 

(i) 1x2 -2y21 > 1. 

(ii) If Ix -yJ21 < 1/y, then x + yJ2 < 2yJ2 + 1/y. 

Now use (i) and (ii) to show that 

lx-yv'2 1 > 
__ 

1

_ 2yJ2+1/y
for all pairs of positive integers ( x, y). 

Does this explain your computations in (a)? 



Chapter 34 

Diophantine Approximation 

and Pell's Equation 

We now return to the problem of finding solutions to Pell's equation 

x2 - Dy2 = 1. 

As we observed in the last chapter, we should look for solutions among those pairs 

(x, y) making Ix - yy'D I small, since any solution to Pell's equation satisfies

The idea we use is to take two pairs for which x2 - Dy2 has the same value and

"divide them." 

An example helps illustrate what we mean. We take D = 13. Looking at

the table in Chapter 33, we see that the pairs (x1, Y1) = (11, 3) and (x2, Y2) = 

(119, 33) are both solutions to the equation x2 - 13y2 == 4. We "divide" these two

solutions as follows: 

119 - 33ylI3 == (119 - 33ylI3) ( 11 + 3ylI3) 
11 - 3ylI3 11 - 3ylI3 11 + 3ylI3 

22 - 6v113 
4 

11 3 == 
- - -v113. 
2 2 
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Voila! The pair (11/2, 3/2) is a solution to Pell's equation x2 - 13y2 = 1. Unfor

tunately, as you may already have noticed, it is not a solution in integers. The dif

ficulty is the appearance of that pesky 2 in the denominator. More precisely, notice 

that there was a 4 in the denominator coming from the fact that 112 - 32 · 13 = 4; 

and we were only able to cancel 2 out of the denominator. 

Maybe if we look for more solutions to x2 - 13y2 = 4, we'll find one that 

allows us to cancel the entire 4 in the denominator. Searching for additional solu

tions, we eventually find (14159, 3927) and, using this solution as our (x2, Y2) , we 

calculate 

14159 - 3927 y'i3 = 2596 - 720v'i3 = 649 - 180J13. 
11 - 3y'i3 4 

Eureka! The Pell equation x2 - 13y2 = 1 has the solution in integers (x, y) 
(649, 180) . 

W hy did the pairs (11, 3) and (14159, 3927) successfully lead to a solution in 

integers? It turns out that these pairs got rid of the 4 in the denominator because 

11 = 14159 (mod 4) and 3 = 3927 (mod 4). 

Armed with this crucial observation, we are finally ready to verify Pell's Equation 

Theorem as stated in Chapter 32. For your convenience, we restate it here. 

Theorem 34.1 (Pell's Equation Theorem). Let D be a positive integer that is not 

a peifect square. Then Pell's equation 

x2 - Dy2 = 1 

always has solutions in positive integers. If ( x1, YI) is the solution with smallest xi, 
then every solution (xk, Yk) can be obtained by taking powers 

fork = 1, 2, 3, .... 

Proof Our first goal is to show that Pell's equation has at least one solution. Ver

sion 1 of Dirichlet's Diophantine Approximation Theorem (Theorem 33.1) tells 

us that there are infinitely many pairs of positive integers ( x, y) that satisfy the 

inequality 

Suppose that ( x, y) is such a pair. We want to estimate the size of 

jx2 - Dy2j =Ix - yVDI ·Ix+ yVDI. 
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The first factor on the right is less than 1 / y. What can we say about the second 

factor? 

Using the fact that Ix -yVDI < l/y, we see that xis bounded by 

x < yVD + 1/y, 
and so 

x + yVD < (yJD + 1/y) + yVD < 2yJD + 1/y < 3yVD. 

Multiplying both sides of this last inequality by Ix -yVDI gives 

l x2 -Dy21 < Ix -yVD I · 3yVD < (1/y) · ( 3yVD) = 3VD. 

To recapitulate, we have shown that every solution in positive integers ( x, y) to 

the inequality 

Ix -yVD I < l/y 

also satisfies the estimate 

l x2 -Dy2 I < 3Vn. 

We now use a variant of the Pigeonhole Principle introduced in Chapter 33. Our 

pigeons are positive integer solutions (x, y) to the inequality Ix -yVDI < l/y. 
Version 1 of Dirichlet's Diophantine Approximation Theorem (Theorem 33.1) tells 

us that there are infinitely many pigeons.1 For pigeonholes we take the integers 

-T, -T + 1, -T + 2, ... , -3, -2, -1, 0, 1, 2, 3, ... , T - 2, T - 1, T, 

where T is the largest integer less than 3VD. We know that if (x, y) is a pi

geon, then the quantity x2 -Dy2 is between -T and T, so we can assign the 

pigeon ( x, y) to the pigeonhole numbered x2 -Dy2. 
We've now taken infinitely many pigeons and stuffed them into a finite col

lection of pigeonholes !2 Clearly, there must be some pigeonhole that contains 

infinitely many pigeons. Say pigeonhole M contains infinitely many pigeons. (To 

simplify the exposition, we assume that M is positive. The argument for negative 

Mis very similar and is left for you to do.) In mathematical terms, this means that 

the "Pell-like" equation 

x2 -Dy2 = M 

1 Don't worry, you won't be assigned the job of feeding the pigeons, nor will you have to clean 

out the pigeonholes. 
2This is a task akin to, but messier than, that of getting infinitely many angels to dance on the 

head of a pin. Which brings up a question you may care to ponder: "To what extent is the Pigeonhole 

Principle an Obvious Truth, and to what extent is it an Act of Faith?" 
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has infinitely many solutions in positive integers ( x, y). We write the list of solu
tions as 

Keep firmly in mind that this list continues indefinitely. 
Following the path suggested by the example at the beginning of this chapter, 

we look for two solutions ( X j, }j) and ( X k, Yk) that also satisfy 

and }j = Yk (mod M). 

We'll find them by once again using the Pigeonhole Principle. This time our pi
geons are the solutions ( X 1, Y1), ( X 2, Y2), ... , so we have infinitely many pigeons. 
The pigeonholes are the pairs 

(A,B) with 0 < A < M and 0 < B < M, 

so there are M2 pigeonholes. We assign each pigeon (Xi, Yi) to a pigeonhole by 
reducing the numbers Xi and Yi modulo M. In other words, the pigeon (Xi, Yi) is 
assigned to the pigeonhole (A, B) by choosing A and B to satisfy 

Xi= A (mod M), Yi= B (mod M), 0 < A,B < M. 

We have again managed to stuff infinitely many pigeons into a finite number of 
pigeonholes, so again there must be some pigeonhole containing infinitely many 
pigeons. In particular, we can find two different pigeons (Xj, }j) and (Xk, Yk) 
nesting in the same hole. Mathematically, we have produced two pairs of positive 
integers (Xj, Yj) and (Xk, Yk) with the following properties: 

Xj = Xk (mod M), 

}j Yk (mod M), 

X� -DY�= M 
J J ' 

xi-DYf = M. 

As described earlier in this chapter, we now expect to get a solution ( x, y) to Pell' s 
equation x2 -Dy2 = 1 by setting 

In other words, we claim that the formulas 

and 

give a solution to x2 -Dy2 = 1 in integers. 
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First we check that ( x, y) satisfies Pell' s equation. 

2 2 (xjxk -YjYkD) 2 (XjYk -XkYj) 2 
x -Dy = 

M 
-D 

M 

(XJ-DY/)(X� -DY[) 
M 2 

= 1. 

Second, we must verify that x and y are integers. Using the congruences 

and Yj Yk (mod M) , 

we find that the "numerators" of x and y satisfy 

XjXk -YjYkD - XJ -Y/D = M 0 (mod M) , 

XjYk -XkYj XjYj -XjYj 0 (mod M) . 
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Thus the numerators are divisible by M, so the M's in the denominators can be 

canceled. This shows that x and y are indeed integers, and replacing them by their 

negatives if necessary, we have found a solution to Pell's equation x 2 -Dy 2 = 1 

in integers x, y > 0. 

Clearly, x > 1. It remains to show that y f:. 0. But if y = 0, then Xj Yk = 
X k Yj, so we find that 

Yk2 M = Yk2(XJ -DY})= (XjYk)2 -D(YjYk)2 
= (XkYj)2 -D(YjYk)2 = Y}(X� -DYf) = Yj2 M. 

However, we chose Yj and Yk to be positive and unequal, so this cannot happen. 

Therefore, y f:. 0, and we have found a solution (x, y) to Pell's equation in positive 

integers. This completes the proof of the first half of Pell's Equation Theorem. 

For the second half, we let (xi, Y1) be the solution in positive integers with 

smallest x1, and we need to show that every solution is obtained by taking powers 

of x1 + y1 v'I5. We could reprise the proof that we gave in Chapter 31 when 

D = 2, but instead we present a different and interesting proof that is useful in 

more general situations. 

Suppose that ( u, v) is any solution to x 2 -Dy 2 = 1 in positive integers. We 

consider the two real numbers 

z = X1 + Y1 Vl5 and r = u+vVJ5. 

The number z satisfies z > 1, so the number r lies between two powers of z, say 

zk < r < zk+l. 
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[To be precise, take k to be the greatest integer less than log ( r ) / log ( z).] Dividing 
by zk gives 

1 < z-

k 
· r < z. 

We observe that zk 
= Xk + YkVD, since that is how we defined Xk and Yk· and 

hence z-

k 
= Xk - YkVD, since we know that 

Thus 

call this s 

We know the following three facts about 8 and t: 

(1) 82 - Dt2 = 1. 

(2) 8 + tffi > i. 

(3) 8 + tffi < z. 

call this t 

We claim that 8 > 0 and t > 0. To verify this claim, we eliminate the other 
possibilities. Fact (2) shows immediately that 8 and t cannot both be negative. 
Suppose that 8 > 0 and t < 0. Then Fact (2) tells us that 8 -tVD > 8 + tVD > 1, 

so using Fact (1) gives 

1 = 82 - Dt2 = ( 8 - tVn) ( 8 + tVn) > 1. 

This is impossible, so we cannot have 8 > 0 and t < 0. Similarly, if 8 < 0 and 
t > 0, then -8 + tVD > 8 + VD> 1, so 

-1 = -82+Dt2=(-8+tv'D)(8+tv'D)>1, 

which is also impossible. We have eliminated every possibility except 8 > 0 and 
t > 0, which completes the proof of the claim. 

We now know that ( 8, t) is a solution to x2 -Dy2 = 1 in nonnegative integers. 
If 8 and t were both positive, then the assumption that ( x 1, Yl) is the smallest such 
solution would imply that 8 > x1. Furthermore, 

82 - 1 x2 - 1 2 t2 = > 1 
= Y1 , D D 

so we also find that t > y1, and hence 
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This contradicts the inequality s + tv'r5 < z in Fact (3). Thus, although s and t 
are both nonnegative, they are not both positive. So one of them is zero, and from 

s2 - Dt2 = 1, we must have t = 0 and s = 1.

To recapitulate, we have shown that z-k · r is equal to 1, which is the same as 

saying that r = zk. In other words, we have shown that if ( u, v ) is any solution to

x2 - Dy2 = 1 in positive integers then there is some exponent k > 1 such that

This shows that u + v v'r5 is a power of x1 + y1 JD, which completes the proof of

Pell's Equation Theorem. D 

Exercises 

34.1. In this chapter we have shown that Pell's equation x2 - Dy2 = 1 always has a so

lution in positive integers. This exercise explores what happens if the 1 on the right-hand

side is replaced by some other number. 

(a) For each 2 < D < 15 that is not a perfect square, determine whether or not the

equation x2 - Dy2 = -1 has a solution in positive integers. Can you determine a

pattern that lets you predict for which D's it has a solution? 

(b) If ( x0, y0) is a solution to x2 - Dy2 = -1 in positive integers, show that ( x5 +

Dy6, 2xoyo) is a solution to Pell's equation x2 - Dy2 = 1. 
(c) Find a solution to x2 - 41y2 = -1 by plugging in y = 1, 2, 3, ... until you find a

value for which 41y2 - 1 is a perfect square. (You won't need to go very far.) Use

your answer and (b) to find a solution to Pell's equation x2 - 41y2 = 1 in positive

integers. 

(d) If (x0, y0) is a solution to the equation x2 - Dy2 = M, and if (x1, y1) is a solution

to Pell's equation x2 - Dy2 = 1, show that (xox1 + Dyoy1, xoy1 + yox1) is also a

solution to the equation x2 - Dy2 = M. Use this to find five different solutions in

positive integers to the equation x2 - 2y2 = 7.

34.2. For each of the following equations, either find a solution ( x, y) in positive integers

or explain why no such solution can exist. 

(a) x2 - lly2 = 7 (b) x2 - lly2 = 433 (c) x2 - lly2 = 3 



Chapter 35 

Number Theory and Imaginary 

Numbers 

Most everyone these days is familiar with the "number" 

i= R. 

The use of "i" to denote the square root of negative 1 dates back to the days when

people viewed such numbers with great suspicion and, indeed, felt that they were 

so far from being real numbers that they deserved to be called imaginary. In these 

more enlightened times we recognize that all 1 numbers are, to some extent, ab

stractions that can be used to solve certain sorts of problems. For example, negative 

numbers (which were not used by European mathematicians even in the fourteenth 

century, although they were in use in India as early as AD 600) are not needed for 

counting cattle, but they are useful in keeping track of who owes how many cattle 

to whom. Fractions arise naturally when people start dealing with objects that can 

be subdivided, such as bushels of wheat or fields of corn. Irrational numbers-that 

is, numbers that are not fractions-appear in even the simplest sorts of measure

ments, as the Pythagoreans discovered when they found that the diagonal of certain 

geometric figures may be incommensurable with their sides. This discovery upset 

the conventional mathematical wisdom of the time, and the penalty was death for 

those who revealed the secret. The introduction of imaginary numbers caused sim

ilar consternation in nineteenth-century Europe, although thankfully the sanctions 

imposed on those using imaginary numbers were less severe than in earlier times. 

Imaginary numbers and more generally complex numbers, 

z=x+iy, 
10r at least, almost all. As Leopold Kronecker (1823-1891) so eloquently put it, "God made the

integers, all else is the work of man." 
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were introduced into mathematics for a definite purpose, the solution of equations. 

Thus negative numbers are needed to solve the equation x + 3 = 0, while fractions 

are needed for 3x - 7 = 0. For the equation x2 
- 5 = 0, we need the irrational 

quantity J5, but even if we introduce more general irrational numbers, we still 

won't be able to solve the very simple equation x2 + 1 = 0. Since this equation 

doesn't have any solutions in "real numbers," there's nothing to stop us from creat

ing a new sort of number to be a solution and giving that new number the name i. 
This is no different from observing that since the equation x2 

- 5 = 0 has no solu

tion in fractions, we are free to create a solution and call it J5. In fact, we're even 

doing the same thing when we observe that 3x - 7 = 0 has no solutions in whole 

numbers, so we create a solution and call it i. 
Complex numbers were thus invented2 to solve equations such as x2 + 1 = 0, 

but why stop there? Now that we know about complex numbers, we can try to 

solve more complicated equations, even equations with complex coefficients such 

as 

(3 + 2i)x3 - ( J3 - 5i )x2 - ( T5 + ij"l4i)x + 17 - 8i = 0. 

If this equation had no solutions, then we would be forced to invent even more 

numbers. Amazingly, it turns out that this equation does have solutions in complex 

numbers. The solutions (accurate to five decimal places) are 

1.27609 + 0.72035i, 0.03296 - 2.11802i, -1.67858 - 0.02264i. 

In fact, there are enough complex numbers to solve every equation of this sort, a 

statement that has a long history and an impressive name. 

Theorem 35.1 (The Fundamental Theorem of Algebra). If a0, a1, a2, ... , ad are 

complex numbers with ao -=!=- 0 and d > 1, then the equation 

a0xd + aixd
-

l + a2xd
-

2 + · · · +ad
-

IX+ ad = 0 

has a solution in complex numbers. 

This theorem was formulated (and used) by many mathematicians during the 

eighteenth century, but the first satisfactory proofs weren't discovered until the 

early part of the nineteenth century. Many proofs are now known, some using 

mostly algebra, some using analysis (calculus), and some using geometric ideas. 

Unfortunately, none of the proofs is easy, so we won't give one here. 

2Some would say that complex numbers already existed and were merely discovered, while others 

believe just as strongly that mathematical entities such as the complex numbers are abstractions that 

were created by human imagination. This question of whether mathematics is discovered or created 

is a fascinating philosophical conundrum for which (as with most good philosophical questions) there 

is unlikely ever to be a definitive answer. 
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Instead, we investigate the number theory of the complex numbers. You un

doubtedly recall the simple rules for adding and subtracting complex numbers, and 

multiplication is just as easy, 

(a+ bi)(c +di) = ac + adi + bci + bdi2 = (ac - bd) +(ad+ bc)i. 

For division we use the old trick of rationalizing the denominator, 

a+ bi 
c+ di 

a+ bi c - di 
c +di c - di 

(ac + bd) +(-ad+ bc)i 
c2 + d2 

We do number theory with a certain subset of the complex numbers called the 

Gaussian integers. These are the complex numbers that look like 

a+ bi with a and b both integers. 

The Gaussian integers have many properties in common with the ordinary integers. 

For example, if a and /3 are Gaussian integers, then so are their sum a + /3, their 

difference a - /3, and their product a/3 . However, the quotient of two Gaussian 

integers need not be a Gaussian integer (just as the quotient of two ordinary integers 

need not be an integer). For example, 

3 + 2i 
1 - 6i 

-9 + 20i 
37 

is not a Gaussian integer, while 

is a Gaussian integer. 

16 - lli 26 - 65i --- = =2 - 5i 
3 + 2i 13 

This suggests that we define a notion of divisibility for Gaussian integers just 

as we did for ordinary integers. So we say that the Gaussian integer a + bi divides 

the Gaussian integer c + di if we can find a Gaussian integer e + f i such that 

c +di = (a+ bi) ( e + f i). 

Of course, this is the same as saying that the quotient 
c + d� is a Gaussian inte
a +bi 

ger. For example, we saw that 3 + 2i divides 16 - lli, but 1 - 6i does not divide 

3 + 2i. 
Now that we know how to talk about divisibility, we can talk about factoriza

tion. For example, the number 1238 - 1484i factors as 

1238 - 1484i = (2 + 3i)3 . (-1 + 4i) . (3 + i)2. 
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And even ordinary integers such as 600 = 23 
· 3 · 52, which we think we already 

know how to factor, can be factored further using Gaussian integers: 

600 = -i . (1 + i)6 . 3 . (2 + i)2 . (2 - i)2. 

For the ordinary integers, the primes are the basic building blocks because they 

cannot be factored any further. Of course, technically this isn't quite true, since the 

prime 7 can be "factored" as 

7 = 1 · 
7, or as 7 = ( -1) · ( -1) · 

7, or even as 

7 = (-1) . (-1) . (-1). (-1). 1 .  1 .  1 .  7. 

However, we recognize that these aren't really different factorizations, because we 

can always put in more l's and pairs of -1 's. What is it about 1 and -1 that makes 

them special? The answer is that they are the only two integers that have integer 

(multiplicative) inverses: 

l · l = 1 and (-1) . (-1) = 1. 

(In fact, they are their own inverses, but this turns out to be less important.) Notice 

that if a is any integer other than 1 and -1 then a does not have an integer mul

tiplicative inverse, since the equation ab = 1 does not have a solution b that is an 

integer. We say that 1 and -1 are the only units in the ordinary integers. 

The Gaussian integers are blessed with more units than are the ordinary inte

gers. For example, i itself is a unit, since 

i. (-i) = 1. 

This equation also shows that -i is a unit, so we see that the Gaussian integers 

have at least four units: 1, -1, i, and -i. Are there any others? 

To answer this question, we suppose that a + bi is a unit in the Gaussian inte

gers. This means that it has a multiplicative inverse, so there is another Gaussian 

integer c + di such that 

(a+ bi)(c +di) = 1. 

Multiplying everything out, we find that 

ac - bd = 1 and ad+ be= 0, 

so we are looking for solutions (a, b, c, d) to these equations in ordinary integers. 

Later we will see a fancier (and more geometric) way to solve this problem, but for 

now, let's just use a little algebra and a little common sense. 
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We need to consider several cases. First, if a = 0 then -bd = 1, sob = ±1 
and a+ bi = ±i. Second, if b = 0, then ac = 1, so a = ±1 and a+ bi = ±1. 
These first two cases lead to the four units that we already know. 

For our third and final case, suppose that a# 0 and b # 0. Then we can solve 

the first equation for c and substitute it into the second equation: 

a2d + b + b2d 
-----= 0. 

1 + bd 
c= ---

a a 

Thus any solution with a # 0 must satisfy 

(a2 + b2)d = -b. 

This means that a2 + b2 divides b, which is absurd, since a2 + b2 is larger than b 

(remember neither a nor b is 0). This means that Case 3 yields no new units, so we 

have completed the proof of our first theorem about the Gaussian integers. 

Theorem 35.2 (Gaussian Unit Theorem). The only units in the Gaussian integers 

are 1, -1, i, and -i. That is, these are the only Gaussian integers that have 

Gaussian integer multiplicative inverses. 

One thing that makes the Gaussian integers an interesting subset of the com

plex numbers is that the sum, difference, and product of any two Gaussian integers 

are again Gaussian integers. Notice that the ordinary integers also have this prop

erty. A subset of the complex numbers that has this property (and also contains the 

numbers 0 and 1) is called a ring, so the ordinary integers and the Gaussian inte

gers are examples of rings. Many other interesting rings lurk within the complex 

numbers, some of which you will have an opportunity to study in the Exercises for 

this chapter. 

Returning to our discussion of factorization in the Gaussian integers, we might 

say that a Gaussian integer a is prime if it is only divisible by ± 1 and itself, but 

this is clearly the wrong thing to do. For example, we can always write 

a = i · (-i) · a, 

so any a is divisible by i and by -i and by ia and by -ia. This leads us to the 

correct definition. A Gaussian integer a is called a Gaussian prime if the only 

Gaussian integers that divide a are the eight numbers 

1, -1, i, -i, a, -a, ia, and - ia. 

In other words, the only numbers dividing a are units and a times a unit. 
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(a) Complex Numbers in the Plane (b) The Gaussian Integers 

Figure 35.1: The Geometry of the Complex Numbers 
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Now that we know what Gaussian primes are, can we identify them? For ex

ample, which of the following do you think are Gaussian primes? 

2, 3, 5, 1 + i, 3 + i, 2 + 3i. 

We could answer this question using the algebraic ideas we employed earlier when 

we determined all the Gaussian units, but our task is easier if we use a soup�on of 

geometry. 

We introduce geometry into our study of complex numbers by identifying each 

complex number x + yi with the point ( x, y) in the plane. This idea is illus

trated in Figure 35.l(a). The Gaussian integers are then identified with the integer 

points (x, y), that is, the points with x and y both integers. Figure 35.l(b) shows 

that the Gaussian integers form a square-shaped lattice of points in the plane. 

Having identified the complex number x + yi with the point ( x, y), we can talk 

about the distance between two complex numbers. In particular, the distance from 

x + yi to 0 is y' x2 + y2. It is a little more convenient to work with the square of 

this distance, so we define the norm of x + yi to be 

N(x+yi)=x2+y2. 

Intuitively, the norm of a complex number a is a sort of measure of the size or 

magnitude of a. In this sense, the norm measures a geometric quantity. On the 

other hand, the norm also has a very important algebraic property: The norm of a 

product equals the product of the norms. It is the interplay between these geometric 

and algebraic properties that makes the norm such a useful tool for studying the 

Gaussian integers. We now verify the multiplication property. 

Theorem 35.3 (Norm Multiplication Property). Let a and f3 be any complex num
bers. Then 

N( a,B) = N (a ) N (/3 ) . 



[Chap. 35] Number Theory and Imaginary Numbers 

Proof If we write a = a + bi and /3 = c + di, then 

a/3 = (ac - bd) +(ad+ bc)i, 

so we need to check that 

(ac - bd)2 + (ad+ bc)2 = (a2 + b2) (c2 + d2). 
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This is easily verified by multiplying out both sides, a task that we leave for you 
(or look back at Chapter 24 ). D 

Before returning to the problem of factorization, it is instructive to see how the 
norm can be used to find the units. Thus, suppose that a = a + bi is a unit. This 
means that there is a f3 = c +di such that a/3 = 1. Taking norms of both sides and 
using the Norm Multiplication Property yields 

N (a) N(/3) = N (a/3) = N(l) = 1, 

so 

But a, b, c, dare all integers, so we must have a2 + b2 = 1. The only solutions to 
this equation are 

(a, b) = (1, 0), (-1, 0), (0, 1), (0, -1), 

which gives us a new proof that the only Gaussian units are 1, -1, i, and -i. We 
also obtain a useful characterization: 

A Gaussian integer a is a unit if and only if N (a ) = 1. 

Now let's try to factor some numbers. We start with the number 2 and try to 

factor it as 
(a+ bi)(c +di)= 2. 

Taking the norm of both sides yields 

[Note that N(2) = N(2 + Oi) = 22 + 0
2 = 4.] We don't want either of a+ bi or 

c +di to be a unit, so neither a2 + b2 nor c2 + d2 is allowed to equal 1. Since their 
product is supposed to equal 4 and they're both positive integers, we must have 

a2 + b2 = 2 and c2 + d2 = 2. 
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These equations certainly have solutions. For example, if we take (a, b) = (1, 1) 
and divide 2 by a+ bi= 1 + i, we get 

2 2(1 - i) 
c + di = -- = = 1 - i. 

1 + i 2 

Hence 2 = (1 + i)(l - i), so 2 is not a Gaussian integer prime! 

If we try to factor 3 in a similar fashion, we end up with the equations 

a2 + b2 = 3 and c2 + d2 = 3. 

These equations clearly have no solutions, so 3 is a Gaussian prime. On the other 

hand, if we start with 5, we end up with the factorization 5 = (2 + i)(2 - i). 
We can use the same procedure to factor Gaussian integers that are not ordinary 

integers. The general method for factoring a Gaussian integer a is to set 

(a + bi) ( c + di) = a 

and take the norm of both sides to obtain 

This is an equation in integers, and we want a nontrivial solution, by which we 

mean a solution where neither a2 + b2 nor c2 + d2 equals 1. So the first thing we 

need to do is factor the integer N (a) into a product AB with A -=I 1 and B -=I 1. 
Then we need to solve 

a2 + b2 =A and c2 + d2 = B. 

Thus, factorization of Gaussian integers leads us back to the sums of two squares 

problem that we studied in Chapters 24 and 25. 

To see how this works in practice, we factor a = 3 + i. The norm of a is 

N(a) = 10, which factors as 2 · 5, so we solve a2 + b2 = 2 and c2 + d2 = 5. There 

are a number of solutions. For example, if we take (a, b) = ( 1, 1), then we obtain 

the factorization 

3+i= (l+i)(2 - i). 

Do you understand why we get several solutions? It has to do with the fact that the 

factorization of 3 + i can always be changed by units. Thus, if we take (a, b) = 
(-1, 1), we get 3 + i = (-1 + i)(-1 - 2i), which is really the same factorization, 

since -1 + i = i(l + i) and -1 - 2i = -i(2 - i). 
What happens when we try to factor a= 1 + i? The norm of a is N(a) = 2, 

and 2 cannot be factored as 2 = AB with ordinary integers A, B > 1. This 
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means that a has no nontrivial factorizations in the Gaussian integers, so it is prime. 

Similarly, we cannot factor 2 + 3i in the Gaussian integers, since N(2 + 3i) = 13 
is a prime in the ordinary integers. [But note that 13 is not a Gaussian prime, since 

13 = (2 + 3i)(2 - 3i).] So 2 + 3i is a Gaussian prime. More generally, if N(a) 
is an ordinary prime, then the same reasoning shows that a must be a Gaussian 

prime. It turns out that these are half the Gaussian primes, and the other half are 

numbers like 3 that are both ordinary primes and Gaussian primes. The following 

theorem gives a complete description of all Gaussian primes. Don't be fooled 

by the shortness of its proof, which merely reflects all our hard work in earlier 

chapters. It is a deep and beautiful result. 

Theorem 35.4 (Gaussian Prime Theorem). The Gaussian primes can be described 

as follows: 

(i) 1 + i is a Gaussian prime. 

(ii) Let p be an ordinary prime with p 3 (mod 4). Then pis a Gaussian prime. 

(iii) Let p be an ordinary prime with p 1 (mod 4) and write pas a sum of two 

squares p = u2 + v2 (see Chapter 24). Then u + vi is a Gaussian prime. 

Every Gaussian prime is equal to a unit (±l or ±i) multiplied by a Gaussian prime 

of the form (i), (ii), or (iii). 3 

Proof As we observed previously, if N ( a) is an ordinary prime, then a must be a 

Gaussian prime. The number 1 + i in category (i) has norm 2, so it is a Gaussian 

prime. Similarly, the numbers u +vi in category (iii) have norm u2 + v2 = p, so 

they are also Gaussian primes. 

Next we check category (ii), so we let a = p be an ordinary prime with 

p _ 3 (mod 4). If a were to have a factorization into Gaussian integers, say 

(a+ bi)(c +di) =a, then taking norms would yield 

(a 2 + b2) ( c2 + d2) = N (a) = p2
. 

To get a nontrivial factorization, we would need to solve 

a2 + b2 = p and c2 + d2 = p. 

But we know from the Sum of Two Squares Theorem (Chapter 24) that since p _ 

3 (mod 4), it cannot be written as a sum of two squares, so there are no solutions. 

Therefore, p cannot be factored, so it is a Gaussian prime. 

3 As you know, mathematicians love to give obscure names to the objects they study. In this in
stance, category (i) primes are called ramified, category (ii) primes are called inert, and category (iii) 
primes are called split. This means that if we cover a prime in category (iii) with ice cream and fruit, 
it becomes a banana split prime! 
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We've now shown that the numbers in categories (i), (ii), and (iii) are indeed 

Gaussian primes, so it remains to show that every Gaussian prime fits into one of 

these three categories. To do this, we use the following lemma. 

Lemma 35.5 (Gaussian Divisibility Lemma). Let a = a+bi be a Gaussian integer. 

(a) If 2 divides N( a), then 1 + i divides a. 
(b) Let 7r = p be a category (ii) prime, and suppose that p divides N(a) as 

ordinary integers. Then 7r divides a as Gaussian integers. 

(c) Let 7r = u + vi be a Gaussian prime in category (iii), and let ff' = u - vi. 
(This is a natural notation, since ff' is indeed the complex conjugate of the complex 

number 'Tr.) Suppose that N(7r) = p divides N(a) as ordinary integers. Then at 

least one of 7r and ff' divides a as Gaussian integers. 

Proof of Lemma. (a) We are given that 2 divides N(a) = a2 + b2, so a and bare 

either both odd or both even. It follows that a + b and -a + b are both divisible 

by 2, so the quotient 
a+ bi 

l+i 

(a+b)+(-a+b)i 

2 

is a Gaussian integer. Hence a+ bi is divisible by 1 + i. 
(b) We are given that p _ 3 (mod 4) and that p divides a2 + b2. This means that 

a2 -b2 (mod p), so we can compute the Legendre symbols 

Since p 3 (mod 4), the Law of Quadratic Reciprocity (Chapter 21) tells us that 

(-;1) = -1, so we get 

But the value of a Legendre symbol is ±1, so we seem to have ended up with 

1 = -1. What went wrong? Stop and try to figure it out for yourself before you 

read on. 

The answer is that a Legendre symbol such as (�) only makes sense if a 1:-

0 (mod p); we never assigned a value to (�) . So the egress from our seeming 

contradiction is that a and b must both be divisible by p, say a = pa' and b = pb'. 
Hence a = a+ bi = p(a' + b'i) is divisible by p = 'Tr, which is what we were 

trying to prove. 

( c) We are given that p divides N (a), so we can write 

N(a)=a2+b2=pK for some integer K > 1. 
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We need to show that at least one of the two numbers 

O'. 

7r 
(au+ bv) +(-av+ bu)i 

p 

is a Gaussian integer. 

Our first observation is that 

and 
O'. 

7r 
(au - bv) +(av+ bu)i 

p 

(au+ bv)(au - bv) = a2u2 - b2v2 

= a2u2 - b2(p - u2) 

= (a2 + b2)u2 - pb2 

= pKu2 - pb2, 
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so at least one of the two integers au + bv and au - bv is divisible by p. A similar 

calculation shows that 

(-av+ bu)(av +bu)= pKu2 - pa2, 

so at least one of -av+ bu and av+ bu is divisible by p. There are thus four cases 

to consider: 

Case 1. au + bv and -av + bu are divisible by p. 

Case 2. au + bv and av + bu are divisible by p. 

Case 3. au - bv and -av + bu are divisible by p. 

Case 4. au - bv and av + bu are divisible by p. 

Case 1 is easy, since it immediately implies that the quotient a/ 7r is a Gaussian 

integer, hence 7r divides a. Similarly, for Case 4, the quotient a/ fr is a Gaussian 

integer, so fr divides a. This takes care of Cases 1 and 4. 

Next consider Case 2, which is a little more complicated. We are given that p 
divides both au + bv and av + bu, from which we deduce that p divides 

(au+ bv)b - (av+ bu)a = (b2 - a2)v. 

(The idea here is that we "eliminated" u from the equation.) Since p clearly doesn't 

divide v (remember that p = u2 + v2), we see that p divides b2 - a2. However, we 

also know that p divides a2 + b2, so we find that p divides both 

and 

Since p -=f. 2, we finally deduce that p divides both a and b, say a = pa' and b = pb'. 
Then 

a= a+ bi= p(a' + b'i) = (u2 + v2)(a' + b'i) = 7rfr(a' + b'i), 
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so for Case 2 we find that a is actually divisible by both 7r and 7T. 
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Finally, we observe that a similar argument for Case 3 leads to the same con-
clusion as in Case 2; we leave the details for you to complete. D 

Resumption of Proof After that (not so) brief interlude, we're ready to resume 
proving the Gaussian Prime Theorem. We suppose that a = a + bi is a Gaus
sian prime, and our aim is to show that a fits into one of the three categories of 
Gaussian primes. We know that N( a) -=/:- l, since a is not a unit, so there is (at 
least) one prime p that divides N (a). 

Suppose first that p = 2. Then Part (a) of the Lemma tells us that 1 + i di
vides a. But a is supposed to be prime, so this means that a must equal 1 + i 

multiplied by a unit, so a fits into category (i). 
Next suppose that p _ 3 (mod 4). Then Part (b) of the Lemma tells us that p 

divides a, so again the primality of a implies that a equals a unit times p. Hence a 

is a category (ii) prime. 
Finally, suppose that p _ 1 (mod 4). The Sum of Two Squares Theorem in 

Chapter 24 tells us that p can be written as a sum of two squares, say p = u2 + v2, 
and then Part ( c) of the Lemma says that a is divisible by either u +iv or by u -iv. 

Hence a is a unit times one of u+iv or u-iv. In particular, a2 +b2 
= u2+v2 

= p, 

so a is a category (iii) prime. This completes our proof that every Gaussian prime 
fits into one of the three categories. D 

Exercises 

35.1. Write a short essay (one or two pages) on the following topics: 

(a) The introduction of complex numbers in nineteenth-century Europe 

(b) The discovery of irrational numbers in ancient Greece 

(c) The introduction of zero and negative numbers into Indian mathematics, Arabic math
ematics, and European mathematics 

(d) The discovery of transcendental numbers in nineteenth-century Europe 

35.2. (a) Choose one of the following two statements and write a one-page essay defend

ing it. Be sure to give at least three specific reasons why your statement is true and 

the opposing statement is incorrect. 

Statement 1. Mathematics already exists and is merely discovered by people (in the 

same sense that the dwarf planet Pluto existed before it was discovered in 1930). 

Statement 2. Mathematics is an abstract creation invented by people to describe the 

world (and possibly even an abstract creation with no relation to the real world). 

(b) Now switch your perspective and repeat part (a) using the other statement. 
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35.3. Write each of the following quantities as a complex number. 

(a) (3 - 2i) · (1 + 4i) (b) 3 - 2� (c) ( 1 + i) 2 
1+4i J2 
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35.4. (a) Solve the equation x2 = 95 - 168i using complex numbers. [Hint. First set
( u + v i)2 = 95 - 168i, then square the left-hand side and solve for u and v.] 

(b) Solve the equation x2 = 1 + 2i using complex numbers. 

35.5. For each part, check whether the Gaussian integer a divides the Gaussian integer f3 
and, if it does, find the quotient. 

(a) a = 3 + 5i and f3 = 11 - 8i 
(b) a = 2 - 3i and f3 = 4 + 7 i 
(c) a = 3 - 39i and f3 = 3 - 5i 
(d) a = 3 - 5i and f3 = 3 - 39i 

35.6. (a) Show that the statement that a+ bi divides c +di is equivalent to the statement
that the ordinary integer a 2 + b2 divides both of the integers ac + b d  and -ad+ be. 

(b) Suppose that a+ bi divides c +di. Show that a2 + b2 divides c2 + d2.

35. 7. Verify that each of the following subsets R 1, R 2, R3, R4 of the complex numbers is
a ring. In other words, show that if a and f3 are in the set, then a +  (3, a - (3, and af3 are
also in the set. 

(a) R1 = {a+ biJ2 : a and bare ordinary integers}. 
(b) Let p be the complex number p = -! + ! i J3.

R 2 = {a+ bp : a and bare ordinary integers}.
[Hint. p satisfies the equation p2 + p + 1 = 0.] 

( c) Let p be a fixed prime number.
R3 = {a/ d : a and d are ordinary integers such that p f d}. 

(d) R4 = {a+ bJ3 : a and bare ordinary integers}. 

35.8. An element a of a ring R is called a unit if there is an element f3 E R satisfying
a/3 = 1. In other words, a E R is a unit if it has a multiplicative inverse in R. Describe all 
the units in each of the following rings. 

(a) R1 = {a + biJ2 : a and bare ordinary integers}.
[Hint. Use the Norm Multiplication Property for numbers a+ bi)2.]

(b) Let p be the complex number p = -! + ! iv'3.
R 2 = {a+ bp : a and bare ordinary integers}.

( c) Let p be a fixed prime number.
R3 = {a/ d : a and d are ordinary integers such that p f d}. 

35.9. Let R be the ring {a + bJ3 : a and bare ordinary integers}. For any element 
a = a + bJ3 in R, define the "norm" of a to be N( a) = a2 - 3b2. (Note that R is a  subset 
of the real numbers, and this "norm" is not the square of the distance from a to 0.) 

(a) Show that N(a/3) = N(a) N(/3) for every a and f3 in R. 
(b) If a is a unit in R, show that N(a) equals 1. [Hint. First show that N(a) must

equal ±1; then figure out why it can't equal -1.] 
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(c) If N( a) = 1, show that a is a unit in R. 

(d) Find eight different units in R. 

(e) Describe all the units in R. [Hint. See Chapter 34.] 
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35.10. Complete the proof of the Gaussian Divisibility Lemma Part (c) by proving that in 
Case 3 the Gaussian integer a is divisible by both 7r and if. 

35.11. Factor each of the following Gaussian integers into a product of Gaussian primes. 
(You may find the Gaussian Divisibility Lemma helpful in deciding which Gaussian primes 
to try as factors.) 

(a) 91 + 63i (b) 975 (c) 53 + 62i 



Chapter 36 

The Gaussian Integers 
and Unique Factorization 

We saw in the last chapter that it can be as much fun doing number theory with 

the Gaussian integers as it is doing number theory with the ordinary integers. In 

fact, some might consider the Gaussian integers to be even more fun, since they 

contain even more prime numbers to play with. We saw long ago how the ordinary 

primes are the basic building blocks used to form all other integers, and we proved 

the fundamental result that each integer can be constructed from primes in exactly 

one way. Although the Fundamental Theorem of Arithmetic studied in Chapter 7 

seemed obvious at first, our trip to the "Even Number World" (the JE-Zone) con

vinced us that it is far more subtle than it initially appeared. 

The question now arises as to whether every Gaussian integer can be written as 

a product of Gaussian primes in exactly one way. Of course, rearranging the order 

of the factors is not considered a different factorization, but there are other possible 

difficulties. For example, consider the two factorizations 

11 - lOi = (3 + 2i)(l - 4i) and 11 - lOi = (2 - 3i)(4 + i). 

They look different, but if you remember our discussion of units, you'll notice that 

3 + 2i = i . (2 - 3i) and 1 - 4i = -i. (4 + i). 

So the two supposedly different factorizations of 11 - lOi arise from the relation 

-i. i = 1.

We would have had the same problem with the ordinary integers if we had 

allowed both positive and negative prime numbers, since, for example, 6 = 2 · 3 = 

(-2) · (-3) has two seemingly "different" factorizations into primes. To avoid

this difficulty, we selected the positive primes as our basic building blocks. This 
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suggests that we do something similar for the Gaussian integers, but clearly we 

can't talk about positive complex numbers versus negative complex numbers. 

If a = a + bi is any nonzero Gaussian integer, then we can multiply a by each 

of the units 1, -1, i, and -i to obtain the numbers 

a= a+ bi, ia = -b + ai, -a= -a - bi 
' 

-ia = b - ai. 

If you plot these four Gaussian integers in the complex plane, you will find that 

exactly one of them is in the first quadrant. More precisely, exactly one of them 

has its x-coordinate > 0 and its y-coordinate > 0. We say that 

x + yi is normalized if x > 0 and y > 0. 

These normalized Gaussian integers will play the same role as positive ordinary 

integers. 

Theorem 36.1 (Unique Factorization of Gaussian Integers). Every Gaussian in

teger a #- 0 can be factored into a unit u multiplied by a product of normalized 

Gaussian primes 

a = U7f1 7f2 • • · 
7f r 

in exactly one way. 

As usual, a few words of explanation are required. First, if a is itself a unit, we 

taker= 0 and u = a and let the factorization of a be simply a = u. Second, the 

Gaussian primes 7f1, ... , 7f r do not have to be different; an alternative description 

is to write the factorization of a as 

using distinct Gaussian primes 7f1, ... , 7f r and exponents ei, ... , er > 0. Third, 

when we say that there is exactly one factorization, we obviously do not consider 

a rearrangement of the factors to be a new factorization. 

If you review1 the proof of the Fundamental Theorem of Arithmetic in Chap

ter 7, you will see that the decisive property of primes, from which all else naturally 

flows, is the following simple assertion: 

If a prime divides a product 

of two numbers, then it divides 

(at least) one of the numbers. 

1 So what are you waiting for, go back and review! 
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Luckily for us, the Gaussian integers also have this property, but before giving the 

proof, we need to know that when we divide one Gaussian integer by another the 

remainder is smaller than the number with which we're dividing. 

This is so obvious for ordinary integers that you probably wouldn't think it was 

worth mentioning. For example, if we divide 177 by 37, we get a quotient of 4 and 

a remainder of 29. In other words, 

177 = 4. 37 + 29, 

and the remainder 29 is smaller than the divisor 37. 

However, matters are far less clear for the Gaussian integers. For example, if 

we divide 237 + 504i by 15 - 17i, what are the quotient and remainder, and how 

can we even talk about the remainder being smaller than the divisor? The answer 

to the second question is easy; we measure the size of a Gaussian integer a + bi 
by its norm N(a +bi) = a2 + b2 so we can ask that the remainder have smaller 

norm than the divisor. But is it possible to divide 237 + 504i by 15 - 17i and get 

a remainder whose norm is smaller than N(15 - 17i) = 514? The answer is Yes 

smce 

237 + 504i = (-10 + 23i)(15 - 17i) + (-4 - lli). 

This says that 237 + 504i divided by -10 + 23i gives a quotient of 15 - 17i 
and a remainder of -4 - lli, and clearly N(-4 - lli) = 137 is smaller than 

N(15 - 17i) = 514. 
We now prove that it is always possible to divide Gaussian integers and get a 

small remainder. The proof is a pleasing blend of algebra and geometry. 

Theorem 36.2 (Gaussian Integer Division with Remainder). Let a and f3 be Gaus
sian integers with /3 # 0. Then there are Gaussian integers I and p such that 

a= /31 + p and N(p) < N(/3). 

Proof If we divide the equation we're trying to prove by /3, it becomes 

a p 
-=1+
/3 /3 

with 

This means that we should choose I to be as close to a/ f3 as possible, since we 

want the difference between I and a/ f3 to be small. 

If the ratio a/ f3 is itself a Gaussian integer, then we can take I = a/ f3 and 

p = O; but in general a/ f3 is not a Gaussian integer. However, it is certainly a com

plex number, so we can mark it in the complex plane as illustrated in Figure 36.1. 

We next tile the complex planes into square boxes by drawing vertical and hori

zontal lines through all the Gaussian integers. The complex number a/ f3 lies in 
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one of these squares, and we take r to be the closest corner of the square that con
tains a/ (3. Note that r is a Gaussian integer, since the corners of the squares are 
the Gaussian integers. 

I 
I 2· ----1----l 
I 
I 
I 
I . 

----1----l 
I 
I 
I 
I 

I I 
I 'Y I 

--------------1---
1 I 
I •a;p I 
I I 
I I 

-------1-------1---
1 I 
I I 
I I 
I I 

I 1 12 

Figure 36.1: Closest Gaussian Integer r to the Quantity a //3 

The farthest that a/ (3 can be from r occurs if a//3 is exactly in the middle of a 
square, so 

(distance from a/ /3 to 1') < v;. 
(The diagonal of the square has length J2, so the middle of the square is half 
of J2 from the comers.) If we square both sides and use the fact that the norm is 
the square of the length, we obtain 

1 
< - 2· 

Next we multiply both sides by N(/3 ) and use the Norm Multiplication Property to 
obtain 

1 N(a - /3r) < 2 N(/3). 

Finally, we simply choose p to be p = a - (3[, and then we get the desired prop
erties: 

a= /3r + p and N(p) < N(/3). 
[In fact, we get the stronger inequality N (p) < ! N (/3).] D 

The next step is to use Gaussian Integer Division with Remainder to show that 
the "smallest" nonzero number of the form Aa + B f3 divides both a and f3. It is 
instructive to compare this with the analogous property of ordinary integers that 
we proved in Chapter 6. 
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Theorem 36.3 (Gaussian Integer Common Divisor Property). Let a and /3 be 
Gaussian integers, and let S be the collection of Gaussian integers 

Aa + B/3, where A and B are any Gaussian integers. 

Among all the Gaussian integers in S, choose an element 

g = aa + b/3 

having the smallest nonzero norm. In other words, 

0 < N(g) < N(Aa + B/3) 
for any Gaussian integers A 
and B with Aa + B/3 # 0. 

Then g divides both a and (3. 

Proof We use Gaussian Integer Division with Remainder to divide a by g, 

with 0 < N(p) < N(g). 

Our goal is to show that the remainder pis zero. 
Substituting g = aa + b/3 into a = g"( + p and doing a little algebra yields 

(1 - a"()a - b1/3 = p. 

Thus p is in the set S, since it has the form 

(Gaussian integer times a)+ (Gaussian integer times /3). 

On the other hand, N (p) < N (g), and we chose g to have the smallest nonzero 
norm among the elements of S. Therefore, N (p) must equal 0, which means that 

p = 0. This shows that a= g"(, so g divides a. 
Finally, reversing the roles of a and /3 and repeating the argument shows that g 

also divides /3. D 

Now we're ready to show that if a Gaussian prime divides a product of two 
Gaussian integers, then it divides at least one of the two. 

Theorem 36.4 (Gaussian Prime Divisibility Property). Let 7r be a Gaussian prime, 
let a and /3 be Gaussian integers, and suppose that 7r divides the product a/3. Then 
either 7r divides a or 7r divides /3 (or both). 

More generally, if 7r divides a product a1 a2 · · ·an of Gaussian integers, then 
it divides at least one of the factors a1, a2, ... , an. 
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Proof We apply the Gaussian Integer Common Divisor Property to the two num

bers a and 7r. This tells us that we can find Gaussian integers a and b such that the 

number 

g = aa + b7r divides both a and 7r. 

But 7r is a prime, so the fact that g divides 7r means either that g is a unit or else g 

is equal to 7r times a unit. We consider these two cases separately. 

First, suppose that g = U7r for some unit u; that is, u is one of the num

bers 1, -1, i, or -i. Since we also know that g divides a, it follows that 7r di

vides a, so we are done. 

Second, suppose that g itself is a unit. We multiply the equation g = aa + b7r 

by /3 to get 

g/3 = aa/3 + b7r/3. 

We are told that 7r divides a/3, so this equation tells us that 7r divides g/3. Since g is 

a unit, it follows that 7r divides /3, so again we are done. This completes the proof 

that if a prime 7r divides a product a/3, then it divides at least one of the factors a 

or (3. 

This proves the first part of the Gaussian Prime Divisibility Property. For the 

second part we can use induction on the number n of factors. We have proved the 

case n = 2 (i.e., two factors al a2), which is enough to get our induction started. 

Now suppose that we have proved the Gaussian Prime Divisibility Property for 

all products having fewer than n factors, and suppose that 7r divides a product 

ala2 · · · an having n factors. If we let a = al · · ·  an-1 and /3 = an, then 7r 

divides a/3, so we know from above that either 7r divides a or 7r divides /3. If 7r 

divides /3, then we're done, since /3 = an. On the other hand, if 7r divides a, then 7r 

divides the product al · · · an-1 consisting of n - 1 factors, so by the induction 

hypothesis we know that 7r divides one of the factors al, ... , an-1 · This completes 

the proof of the Gaussian Prime Divisibility Property. D 

We are finally ready to prove that every nonzero Gaussian integer has a unique 

factorization into primes. 

Proof of Unique Factorization of Gaussian Integers. We begin by demonstrating 

that every Gaussian integer has some factorization into primes. We could sim

ply mimic the proof we gave in Chapter 7, but for the sake of variety, we instead 

give a proof by contradiction. (To refresh your memory of how these work, see 

the proof of Theorem 8.2 on page 60.) We begin the proof by assuming that the 

following statement is true, and we use this assumption to deduce a contradiction, 

which then lets us conclude that the statement is false. 

S 
{There exists at least one nonzero Gaussian 

tatement: . 
h d 

c . . 
mteger t at oes not .iactor mto pnmes. 
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Among the nonzero Gaussian integers with this property, we choose one (call it a) 
having smallest norm. We can do this, since the norms of nonzero Gaussian in
tegers are positive integers, and any collection of positive integers has a smallest 
element. Notice that a cannot itself be prime, since otherwise a = a is already 
a factorization of a into primes. Similarly, a cannot be a unit, since otherwise 

a = a would again be a factorization into primes (in this case, into zero primes). 
But if a is neither prime nor a unit, then it must factor a = f31 into a product of 
two Gaussian integers, neither of which is a unit. 

Now consider the norms of f3and1· Since f3and1 are not units, we know that 
N(f3) > 1 and N(1) > 1. We also have the multiplication property N(f3) N(1) = 

N(a), so 

N(/3) = :i�j < N(a) and 
N(a) 

N(1) = 

N(f3) 
< N(a). 

But we chose a to be the Gaussian integer of smallest norm that does not factor 
into primes, so both f3 and 1 do factor into primes. In other words, 

and 

.{: ·
G 

· · ' ' B h i_Or certam aussian pnmes 7r1, ... , 7f r, 7f 1, ... , 7f 8• 
ut t en 

is also a product of primes, which contradicts the choice of a as a number that 
cannot be written as a product of primes. This proves that our Statement must 
be false, since it leads to the absurdity that a both does and does not factor into 
primes. In other words, we have proved that the statement "there exist nonzero 
Gaussian integers that do not factor into primes" is false, so we have proved that 
every nonzero Gaussian integer does factor into primes. 

The second part of the theorem requires us to show that the factorization into 
primes can be done in only one way, subject to the caveats already described. Again 
we could mimic the proof in Chapter 7, but instead we use a proof by contradiction. 
We start with the following statement: 

tatement: . . . . . . . . S 
{There exists at least one nonzero Gaussian 

mteger with two distmct factonzatlons mto pnmes. 

Assuming the truth of this statement, we look at the set of all Gaussian integers 
having two distinct factorizations into primes (the statement assures us this set is 
not empty), and we take a to be an element of the set having the smallest possible 
norm. 
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This means that a has two different factorizations 
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where the primes are normalized as described at the beginning of this chapter. 

Clearly, a cannot be a unit, since otherwise we would have a = u = u
'

, so the 

factorizations would not be different. This means that r > 1, so there is a prime 7r1 
in the first factorization. Then 7r1 divides a, so 

divides the product 

The Gaussian Prime Divisibility Property tells us that 7r1 divides at least one of 

the numbers u
'

, 7r�, ... , 7r�. It certainly doesn't divide the unit u
'

, so it divides 

one of the factors. Rearranging the order of these other factors, we may assume 

that 7r1 divides 7r�. However, the number 7r� is a Gaussian integer prime, so its only 

divisors are units and itself times units. Since 7r1 is not a unit, we deduce that 

7r1 = (unit) x 7r�. 

Furthermore, both 7r1 and 7r� are normalized, so the unit must equal 1 and 7r1 = 7r�. 
Let f3 = a/ 7r1 = a/ 7r�. Canceling 7r1 from the two factorizations of a yields 

This number /3 has the following two properties: 

• N(/3) = N(a)/N(7r) < N(a). 

• /3 has two distinct factorizations into primes (since a has this property, and 

we canceled the same factor from both sides of the two factorizations of a). 

This contradicts the choice of a as the smallest number with two distinct factor

izations into primes, and hence our original statement must be false. Thus, there 

do not exist any Gaussian integers with two distinct factorizations into primes, so 

every Gaussian integer has a unique such factorization. D 

We use the Gaussian Integer Unique Factorization Theorem to count how many 

different ways a number can be written as a sum of two squares. For example, 

how many ways can the number 45 be written as a sum of two squares? A little 

experimentation quickly yields 
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and this is the only way to write 45 as a2 + b2 with a and b positive and a < b. Of 

course, we could switch the two terms to get 45 = 62 + 32, and we could also use 

negative numbers, for example, 

and 

It is convenient to count all of these as different. So we say that 45 can be written 

as a sum of two squares in eight different ways: 

45 = 32 + 62 
45 = (-3)2 + 62 
45 = 32 + (-6)2 
45 = (-3)2 + (-6)2 

In general, we write 

45 = 62 + 32 
45 = 62 + (-3)2 
45 = (-6)2 + 32 
45 = ( -6) 2 + ( -3) 2 

R(N) =number of ways to write N as a sum of two squares. 

This is also known as the number of representations of N as a sum of two squares, 

which explains the nomenclature. Our example says that 

R(45) = 8. 

Similarly, R(65) = 16, since 

65 = 12 + 82 
65=(-1)2+82 
65 = 12 + (-8)2 
65 = (-1)2 + (-8)2 
65 = 42 + 72 
65 = (-4)2 + 72 
65 = 42 + (-7)2 
65 = (-4)2 + (-7)2 

65=82+12 
65=82+(-1)2 
65 = ( -8)2 + 12 
65 = (-8)2 + (-1)2 
65 = 72 + 42 
65 = 72 + ( -4)2 
65 = (-7)2 + 42 
65 = (-7)2 + (-4)2. 

The following beautiful theorem gives a surprisingly simple formula for the 

number of representations of an integer N as a sum of two squares. 

Theorem 36.5 (Sum of Two Squares Theorem (Legendre)). For a given positive 
integer N, let 

D1 = (the number of positive integers d dividing N that satisfy d _ 1 (mod 4)), 
D3 = (the number of positive integers d dividing N that satisfy d = 

3 (mod 4)). 
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Then N can be written as a sum of two squares in exactly 

R(N) = 4(Di - D3) ways. 
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Before giving the proof of Legendre's formula, we illustrate the theorem with 

the number N = 45. The divisors of 45 are 

1, 3, 5, 9, 15, 45. 

Four of these divisors (1, 5, 9, 45) are congruent to 1 modulo 4, so Di = 4, while 

two of the divisors (3 and 15) are congruent to 3 modulo 4, so D3 = 2. The 

theorem says that 

R(45) = 4(Di - D3) = 4(4 - 2) = 8, 

which agrees with our earlier calculation. Similarly, the number 65 has the four 

divisors 1, 5, 13, and 65, all of which are congruent to 1 modulo 4. Thus the 

theorem predicts that 

R(65) = 4(4 - 0) = 16, 

again agreeing with the preceding calculation. 

Proof of Legendre's Sum of Two Squares Theorem. The proof has two steps. First 

we find a formula for R(N). Next we find a formula for Di - D3. Comparing the 

two formulas completes the proof. 

Although the proof is not very hard, it may seem complicated because of the 

notation. So we first explain how to use Gaussian integers to compute R(N) for 

a particular number N. If you can follow the proof for this value of N, then you 

should have no trouble with the general proof. 

We use the number N = 28949649300. We begin by factoring N into a prod

uct of ordinary primes and grouping together the primes that are congruent to 1 

modulo 4 and the ones congruent to 3 modulo 4, 

N = 28949649300 = 22 • (52 · 133) (32 . 114) . 
�� 

(i mod 4 primes) (3 mod 4 primes) 

Next we factor N into a product of Gaussian primes. Using the facts that 2 
-i(l + i)2, the primes congruent to 1 modulo 4 factor into products of conjugate 

Gaussian primes, and the primes congruent to 3 modulo 4 are already Gaussian 

primes, we obtain the factorization 

N = -(1 + i)4 · ( (2 + i)2(2 - i)2 · (2 + 3i)3(2 - 3i)3) · 
(32 • 114). 
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Now suppose that we want to write N as a sum of two squares, say N = A 2 + B2. 
This means that 

N =(A+ Bi)(A - Bi), 

so by unique factorization of Gaussian integers, A+ Bi is a product of some of 

the primes dividing N, and A - Bi is the product of the remaining ones. 

However, we don't have complete freedom in distributing the primes divid

ing N, because A+ Bi and A - Bi are complex conjugates of one another. That 

is, changing i to -i changes one into the other. This means that if some prime 

power (a+ bi)e divides A+ Bi, then the conjugate prime power (a - bi)e must 

divide A - Bi. So, for example, if (2 + i)2 divides A+ Bi, then (2 - i)2 divides 

A - Bi, so there won't be any 2 - i factors left to divide A+ Bi. 
This reasoning also applies to the Gaussian primes congruent to 3 modulo 4. 

Thus we can't have 9 dividing A+ Bi, since then there wouldn't be any factors 

of 3 left over to divide A - Bi. These observations show that the factors A+ Bi 
of N = 28949649300 must look like 

A+ Bi =unit· (1 + i)2 · (2 + ir(2 - i)2-n · (2 + 3i)m(2 - 3i)3-m · 
3 

· 112, 

where we can take any 0 < n < 2 and any 0 < m < 3. There are thus 3 choices 

for n, there are 4 choices for m, and there are the usual 4 choices of the unit, so 

there are 4 · 3 · 4 = 48 possibilities for A+ Bi. The unique factorization property 

of Gaussian integers tells us that writing N as a sum of two squares is exactly the 

same problem as finding an A+ Bi dividing N, so we conclude that R(N) = 48. 
But it is important to keep in mind that this number 48 is really the product of the 

following three quantities: 

• the number of units in the Gaussian integers 

• one more than the exponent of 2 + i 

• one more than the exponent of 2 + 3i 

We now begin the proof of Legendre's Sum of Two Squares Theorem. We begin 

by factoring N into a product of ordinary primes 

(1 mod 4 primes) (3 mod 4 primes) 

where Pl, ... , Pr are congruent to 1 modulo 4, and qi, ... , q8 are congruent to 3 

modulo 4. We use Gaussian integers to find a formula for R(N) in terms of the 

exponents ei, ... , er, Ji, ... , fs· 
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We factor N into a product of Gaussian primes. The integer 2 factors as 

2 = -i(l + i)2, and each Pi factors as 

Pi= (aj + bji)(aj - bji), 
while the Qj are themselves Gaussian primes. This gives the factorization 

N = (-i)t(l + i)2t ( (a1 + bii) (a1 - bii) ri ( (a2 + bzi)(a2 - bzi) r2 
· · · ( ( ar + bri) ( ar - bri)) er q{1 qt2 · · · q{s. 

If any of the exponents Ji, ... , ls is odd, then we know that N cannot be 

written as a sum of two squares, so R(N) = 0. So we now suppose that all of 

Ji, ... , ls are even, and we suppose that N is written as a sum of two squares, say 

N = A 2 + B2. This means that 

N =(A+ Bi)(A - Bi), 
so A + Bi and A - Bi are composed of the prime factors of N. Furthermore, 

since A+ Bi and A - Bi are complex conjugates of one another, each prime that 

appears in one of their factorizations must have its complex conjugate appearing in 

the other. This means that A+ Bi looks like 

A+ Bi= u(l + i)t((a1 + bii)x1(a1 - bii)ei-xi) 
... ((ar + bri)Xr(ar _ bri)er-Xr)q{i/2q{2/2 ... q{s/2, 

where u is a unit and the exponents x1, ... , Xr satisfy 

0 < x1 < ei, 0 < x2 < ez,... 0 < Xr < er. 
Taking the norm of both sides expresses N as a sum of two squares, so counting 

the number of choices for the exponents, we find that this gives 

4(e1+l)(e2+1) ···(er+ 1) 
ways to write N as a sum of two squares. (We leave it as an exercise for you to 
check that different choices of u, x1, ... , Xr yield different values of A and B .) 

To recapitulate, we have proved that if the integer N is factored as 

N = 2tp�l ... p�r q{l ... q{s 

with Pl, ... , Pr all congruent to 1 modulo 4 and q1, ... , Qs all congruent to 3 mod

ulo 4 then 

R(N) = { �(e1+l)(e2+1) ···(er+ 1) if Ji, ... , ls are all even, 

if any of Ji, ... , ls is odd. 

The proof of Legendre's Sum of Two Squares Theorem will thus be complete once 

we prove that the difference D1 - D3 is given by the same formula. 
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Theorem 36.6 (Difference of D1 - D3 Theorem). Factor the integer N into a 

product of ordinary primes as 

Let 

N _ 2t pe1pe2 per q
fi qh q

f 
s - 1 2 "' r ' 1 2 "' s · 

(1 mod 4 primes) (3 mod 4 primes) 

D1 = (the number of integers d dividing N that satisfy d = 1 (mod 4)), 

D3 = (the number of integers d dividing N that satisfy d = 3 (mod 4)) . 

Then the difference D1 - D3 is given by the rule 

if Ji, ... , f s are all even, 

if any of Ji, ... , fs is odd. 

Proof We give a proof by induction on s. First, ifs = 0, then N = 
2tp�1 • • •  p;r, 

so every odd divisor of N is congruent to 1 modulo 4. In other words, D3 = 0, 

and D1 is the number of odd divisors of N. The odd divisors of N are the numbers 

pr1 · · · p�r with each exponent ui satisfying 0 < ui < ei. There are thus ei + 1 

choices for ui, which means that the total number of odd divisors is 

This completes the proof if s = 0, that is, if N is not divisible by any 3 modulo 4 

pnmes. 

Now let N be divisible by q for some prime q = 3 (mod 4), and assume that 

we have completed the proof for all numbers having fewer 3 modulo 4 prime divi

sors than N. Let qf be the highest power of q dividing N, so N = qf 
n with f > 1 

and q f n. We consider two cases, depending on whether f is odd or even. 

First, suppose that f is odd. The odd divisors of N are the numbers 

q
i 
d with 0 < i < f and d odd and dividing n. 

Thus each divisor d of n gives rise to exactly f + 1 divisors of N, that is, to the 

divisors q
i 
d with 0 < i < f; and of these f + 1 divisors of N, exactly half are 

congruent to 1 modulo 4 and exactly half are congruent to 3 modulo 4. Thus the 

divisors of N are equally split among D1 and D3, so we have D1 - D3 = 0. This 

completes the proof in the case that N is divisible by an odd power of a 3 modulo 4 

pnme. 

Second, suppose that N = qf 
n with f even. Again the odd divisors of N 

look like q
i 
d with 0 < i < f and d odd and dividing n. If we only consider 
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divisors qid with exponents 0 < i < f - 1, then the same reasoning as before 
shows that the number of 1 modulo 4 divisors is exactly the same as the number 
of 3 modulo 4 divisors, so they cancel out in the difference D1 - D3. So we are 
left to consider the divisors of N of the form qf d. The exponent f is even, so 
qf = 1 (mod 4). This means that qf d counts in D1 if d = 1 (mod 4) and it counts 
in D3 if d - 3 (mod 4). In other words, 

(D1 for N) - (D3 for N) = (D1 for n) - (D3 for n) . 

Our induction hypothesis tells us that the theorem is true for n, so we deduce that 
the theorem is also true for N. This completes the proof of the D1 - D3 Theorem. 

D 

Exercises 

36.1. (a) Let a: = 2 + 3i. Plot the four points a:, io:, -a:, -io: in the complex plane. 

Connect the four points. What sort of figure do you get? 

(b) Same question with a:= -3 + 4i. 
(c) Let a: = a+ bi be any nonzero Gaussian integer. Let A be the point in the complex 

plane corresponding to a:, let B be the point in the complex plane corresponding 

to io:, and let 0 = (0, 0) be the point corresponding to 0. What is the measure of the 
--+ 

angle LAOB? That is, what is the measure of the angle made by the rays OA and 
--+ 

OB? 

(d) Again let a:= a+ bi be any nonzero Gaussian integer. What sort of shape is formed 

by connecting the four points a:, io:, -a:, and -io:? Prove that your answer is correct. 

36.2. For each of the following pairs of Gaussian integers a: and j3, find Gaussian integers 

r and p satisfying 

(a) a: = 11 + 17i, j3 = 5 + 3i 
(b) a: = 12 - 23i, /3 = 7 - 5i 
(c) a: = 21 - 20i, j3 = 3 - 7i 

and N(p) < N(/3). 

36.3. Let a: and j3 be Gaussian integers with j3 -=f. 0. We proved that we can always find a 

pair of Gaussian integers ( 1, p) that satisfy 

a:= /31 + p and N(p) < N(/3). 

(a) Show that there are actually always at least two different pairs ( 1, p) with the desired 

properties. 
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(b) Can you find an a and {3 with exactly three different pairs ( /, p) having the desired 
properties? Either give an example or prove that none exists. 

(c) Same as (b), but with exactly four different pairs (I, p). 
(d) Same as (b), but with exactly five different pairs (I, p). 
(e) Illustrate your results in (a), (b), (c), and (d) geometrically by dividing a square into 

several different regions corresponding to the value of a/ {3. 

36.4. Let a and {3 be Gaussian integers that are not both zero. We say that a Gaussian 
integer / is a greatest common divisor of a and {3 if (i) / divides both a and {3, and 
(ii) among all common divisors of a and {3, the quantity N ( /) is as large as possible. 
(a) Suppose that/ and c5 are both greatest common divisors of a and {3. Prove that/ 

divides c5. Use this fact to deduce that c5 = U/ for some unit u. 

(b) Prove that the set 

{ ar + {3s : rand s are Gaussian integers} 

contains a greatest common divisor of a and {3. [Hint. Look at the element in the set 
that has smallest norm.] 

(c) Let I be a greatest common divisor of a and {3. Prove that the set in (b) is equal to 
the set 

{ 1t : t is a Gaussian integer}. 

36.5. Find a greatest common divisor for each of the following pairs of Gaussian integers. 
(a) a = 8 + 38i and {3 = 9 + 59i 
(b) a= -9 + 19i and {3 = -19 + 4i 
( c) a = 40 + 60i and {3 = 11 7 - 26i 
(d) a= 16 - 120i and {3 = 52 + 68i 

36.6. Let R be the following set of complex numbers: 

R = {a + bi J5 : a and b are ordinary integers}. 

(a) Verify that R is a ring. That is, verify that the sum, difference, and product of ele
ments of R are again in R. 

(b) Show that the only solutions to a{3 = 1 in R are a = {3 = 1 and a = {3 = -1. 
Conclude that 1 and -1 are the only units in the ring R. 

(c) Let a and {3 be elements of R. We say that {3 divides a if there is an element I in R 
satisfying a= {3/. Show that 3 + 2iJ5 divides 85 - lliJ5. 

(d) We say that an element a of R is irreducible2 if its only divisors in R are ±1 and ±a. 
Prove that the number 2 is an irreducible element of R. 

2More generally, an element a whose only divisors are u and ua with u a unit is called an 

irreducible element. The name prime is reserved for an element a with the property that if it divides 

a product, then it always divides at least one of the factors. For ordinary integers and for the Gaussian 

integers, we proved that every irreducible element is prime, but this is not true for the ring R in this 

exercise. 
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(e) We define the norm of an element a= a+ biv'5 in R to be N(a) = a2 + 5b2. Let

a = 11 + 2iv'5 and (3 = 1 + iv'5. Show that it is not possible to find elements I

and p in R satisfying 

Q = f31 + p and N(p) < N(f3).

Thus R does not have the Division with Remainder property. [Hint. Draw a picture 

illustrating the points in R and the complex number a/ (3.] 

(f) The irreducible element 2 clearly divides the product 

(1 + iv'5)(1 - iv'5) = 6.

Show that 2 does not divide either of the factors 1 + iv'5 or 1 - iv'5. 
(g) Show that the number 6 has two truly different factorizations into irreducible ele

ments of R by verifying that the numbers in the factorizations 

6 = 2. 3 = (1 + iv'5)(1 - iv'5) 

are all irreducible. 

(h) Find some other numbers a in R that have two truly different factorizations a 

7r1 7r2 = 7r37r 4, where 7r1, 7r2, 7r3, 7r 4 are distinct irreducible elements of R.

(i) Can you find distinct irreducibles 7r1, 7r2, 7r3, 7r 4, 7r5, 7r6 in R with the property that

7r17r2 = 7r37r4 = 7r57r5? 

36.7. During the proof of Legendre's Sum of Two Squares Theorem, we needed to know 

that different choices of the unit u and the exponents x1, ... , Xr in the formula

A+ Bi = u(l + i)t ( ( ai + bi iY1 ( ai - bi i)e1 -xi)
... ((ar + bri)Xr(ar _ bri)er-Xr)q{if2qt2/2 .. ·q{s/2

yield different values of A and B. Prove that this is indeed the case.

36.8. (a) Make a list of all the divisors of the number N = 2925.

(b) Use (a) to compute Di and D3, the number of divisors of 2925 congruent to 1and3

modulo 4, respectively. 

(c) Use Legendre's Sum of Two Squares Theorem to compute R(2925). 
(d) Make a list of all the ways of writing 2925 as a sum of two squares and check that it 

agrees with your answer in (c). 

36.9. For each of the following values of N, compute the values of Di and D3, check your

answer by comparing the difference Di - D3 to the formula given in the Di - D3 Theorem,

and use Legendre's Sum of Two Squares Theorem to compute R(N). If R(N) -/= 0, find 

at least four distinct ways of writing N = A2 + B2 with A > B > 0.
(a) N = 327026 700 
(b) N = 484438500 



Chapter 37 

Irrational Numbers 

and Transcendental Numbers 

In the historical development of numbers and mathematics, fractions (also called 

rational numbers since they are ratios) appeared quite early, having been used in 

ancient Egypt as early as 1700 BCE. Rational numbers come up very naturally 

as soon as a civilization needs to subdivide land or cloth or gold or whatever into 

pieces. Fractions also appear when two quantities are compared. To take a con

crete example, the distance from Cairo to Luxor is more than twice as far as the 

distance from Cairo to Alexandria, but less than three times as far. Such a state

ment is helpful, but not particularly precise. On the other hand, for most practical 

purposes it suffices to say that the former distance is 17/6 times the latter distance. 

This means that 6 times the distance from Cairo to Luxor is equal to 1 7 times the 

distance from Cairo to Alexandria. We say that two quantities are commensurable

if a nonzero integer multiple of the first is equal to a nonzero integer multiple of 

the second; or, equivalently, if their ratio is a rational number. Notice that this is 

how we measure distances today. When we say that it is 3. 7 miles to the center of 

town, what we really mean is that 10 times the distance to the center of town is the 

same as 3 7 times the length of an idealized distance called a "mile." 

For a very long time, people who gave the matter any thought seem to have 

assumed that every number is a rational number. In geometric terms, they assumed 

that any two distances were commensurable. The first indication that this might not 

be true appeared in Greece about 2500 years ago. Ironically, nonrational numbers 

made their debut in the Pythagorean Theorem, that gem of classical mathematics 

about which we have already waxed poetic in Chapter 2. Although the Pythagorean 

Theorem was known long before the time of Pythagoras, it was in ancient Greece 

that someone (possibly Pythagoras himself) first observed that the hypotenuse of 
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an isosceles right triangle (see Figure 37.1) is not commensurable with the sides. 

For example, the Pythagorean Theorem tells us that an isosceles right triangle 

whose sides have length 1 has a hypotenuse of length v'2. It is not known exactly 

how the Pythagoreans deduced that the sides and the hypotenuse of such a triangle 

are incommensurable, but the following elegant proof of the irrationality of v'2 is 

adapted from the 101h book of Euclid's Elements. 

s 

s 

Figure 37 .1: An Incommensurable Hypotenuse 

Theorem 37 .1 (Irrationality of v'2 Theorem). The square root of 2 is irrational. 
That is, there is no rational number r satisfying r2 

= 2. 

Proof. We assume that there does exist a rational number r satisfying r2 
= 2, and 

we use the supposed existence of r to end up with a contradictory statement, that is, 

with a statement that is clearly false. This contradiction shows that such an r does 

not exist. As noted in Chapter 36, this method of proof by contradiction (reductio 
ad absurdum in Latin) is a powerful tool in the mathematical arsenal. 

Now for the details. We assume that r is a rational number satisfying r2 
= 2. 

Since r is a rational number, we can writer as a fraction r = a/b, and since we can 

always cancel factors that are common to the numerator and denominator, we can 

assume that a and b are relatively prime. In other words, we write r as a fraction in 

lowest terms. 

The assumption that r2 
= 2 means that 

a2 
= 2b2. 

In particular, a2 is even, so a must be even, say a = 2A. If we substitute this in 

and cancel 2 from each side, we get 

2A2 
= b2, 
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so b must also be even. But a and b are relatively prime, so they can't both be 
even, which gives us the desired contradiction. Since the existence of r leads to a 
contradiction, we are forced to conclude that r cannot exist. Therefore, there is no 
rational number whose square equals 2. D 

This proof of the irrationality of J2 can be generalized in many ways. For 
example, let's prove that if p is any prime then yip is irrational. As before, we 
assume that there is a rational number r satisfying r2 = p and try to deduce a 
contradiction. Writing r = a/b as a fraction in lowest terms, we obtain 

a2 = p. b2, 

so p divides a 2. 
In Chapter 7 we showed that if a prime divides a product of two numbers then 

it must divide at least one of the numbers. In this case, the prime p divides the 
product a · a, so we conclude that p divides a, say a = pA. Substituting and 
canceling p gives 

P. A2 = b2, 

so by the same reasoning we deduce that p divides b. Thus p divides both a and b, 
which contradicts the fact that a and b are relatively prime. Therefore, r cannot 
exist, which completes the proof that yip is irrational. 

Philosophical Interlude. The method of proof by contradiction (reductio ad ab
surdum) is based on the principle that if a statement leads to a false conclusion 
then the original statement is itself false. Although common sense says that this 
principle is valid, it actually depends on the underlying assumption that the orig
inal statement must be either true or false. The assumption that every statement 
is either true or false is called the Law of the Excluded Middle, and despite its 
grand-sounding name, the Law of the Excluded Middle is really an assumption (in 
mathematical terms, an axiom) that is used in the formal construction of mathe
matical systems.1 Some mathematicians and logicians do not accept the Law of 
the Excluded Middle and have constructed mathematical theories without using 
proofs by contradiction. 

1 Actually, life is even more complicated than indicated in our brief philosophical digression. Kurt 

Godel proved in the 1930s that any "interesting" mathematical system (for example, the theory of 

numbers) contains statements that are undecidable, which means that they are neither provably true 

nor provably false within the given mathematical system. A mind-twisting challenge for you is to 

try to imagine how one proves that certain statements cannot be proved! A further philosophical 

conundrum: Can a statement be true even if it is not possible to prove that it is true? What does 

"true" mean? If you believe that absolute mathematical knowledge already exists and is merely 

discovered, rather then created, by mathematicians (see Exercise 35.2 and the footnote on page 268), 

then in some sense, isn't every statement either true or false? 
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W hen we say that J2 is irrational, we are really asserting that the polynomial 

x2 - 2  

has no rational roots, and similarly the irrationality of JP for primes p is the same 

as saying that X2 - p has no roots. In general, a polynomial 

coXd + c1Xd-l + c2Xd-2 + · · · 
+ Cd-lX +Cd 

with integer coefficients is likely to have many irrational roots, although it is fre

quently difficult to figure out what the roots look like. For example, one of the 

roots of the polynomial 

X12 - 66X10 - 8X9 + 1815X8 - 26610X6 + 5808X5 + 218097 X4 

- 85160X3 - 971388X2 + 352176X + 17 42288 

is the horrible-looking number 2 

There are obviously many polynomials with integer coefficients, and most of 

them have irrational roots. We say that a number is algebraic if it is the root of a 

polynomial with integer coefficients. For example, the numbers 

2 
7' J2, {/7, sin(7r/6), and even JU + \/2 + J7 

are all algebraic numbers. Note that every rational number a/b is an algebraic 

number, since it is a root of the polynomial bX - a; but, as we have seen, many 

algebraic numbers are not rational numbers. 

Given the seeming abundance of algebraic numbers, we might hope that every 

irrational number is algebraic; that is, we might hope that every irrational number 

is the root of a polynomial having integer coefficients. To take a specific example, 

do you think that the familiar number 7r = 3.1415926 ... is an algebraic number? 

In the mid-eighteenth century, Leonhard Euler suggested that it is not. 3 A number 

that is not algebraic is called a transcendental number, because it transcends the 

numbers that are roots of polynomials with integer coefficients. 

2How do you think I found this complicated root of such a huge polynomial? 
3Euler wrote (in 1755) that "it appears to be fairly certain that the periphery of a circle constitutes 

such a peculiar kind of transcendental quantity that it can in no way be compared with other quanti

ties, either roots or other transcendentals." Legendre proved in 1794 that 7r2 is irrational and noted 

that "it is probable that the number 7f is not even contained among the algebraic irrationalities ... but 

it seems to be very difficult to prove this strictly." 
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Euler and his contemporaries were not able to prove that 7r is transcendental, 

and indeed, it took more than 100 years before F. Lindemann proved the transcen

dence of 7r in 1882. Unfortunately, even with subsequent simplifications, the proof 

that 7r is transcendental is too complicated for us to give here. Actually, it's not 

easy to show that transcendental numbers exist at all! The first person to exhibit a 

transcendental number was Joseph Liouville in 1840. We follow Liouville's path 

by taking a particular number and proving that it is transcendental. Liouville 's 

number is given by the nonrepeating decimal 

digit: 1 2  6 24 120 720 

-!--!- -!- -!- -!- + 
(3 = 0.11000100000000000000000100 ... 00100 ... 00100 ... . 

More precisely, the nth "one" in the decimal expansion of f3 appears as the n!th 
(that's n factorial) decimal digit, and all the rest of the decimal digits are zeros. 

Another way to write f3 is 

1 1 1 1 1 1 f3 = 10 + 102 + 106 + 1024 + 10120 + 10720 + ... ' 

or, using summation notation for infinite series, 

00 1 f3=L1on!· n=l 
To show that f3 is transcendental, we need to show that f3 is not the root of 

any polynomial having integer coefficients. Just as in the proof of the irrationality 

of J2, we give a proof by contradiction. Thus we suppose that the polynomial 

f (X) = coXd + c1xd-l + c2xd-2 + ... +Cd-
Ix+ Cd 

has integer coefficients and f ((3) = 0. Liouville's brilliant idea is that if an irra

tional number is the root of a polynomial, then it cannot be too close to a rational 

number. So before studying Liouville's number, we make a brief detour to discuss 
the question of approximating irrational numbers by rational numbers. 

You may recall Dirichlet's Diophantine Approximation Theorem (see Chap

ter 33), which says that for any irrational number a there are infinitely many ratio

nal numbers a/ b such that 

I� -
a l < b�· 

In other words, we can find lots of rational numbers that are fairly close to a. We 

might ask whether we can get even closer. For example, are there infinitely many 

rational numbers a/b such that 
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The answer depends to some extent on the number o:. 

302 

For example, suppose we take o: = v'2. This means that o: is a root off (X) = 

X
2 -2, so if a/bis close too:, then f(a/b) should be fairly small. How can we 

quantify this observation? We can measure the smallness of f(a/b) by factoring 

f ( �) = ( �) 
2 

- 2 = ( � + v'2) ( � - v'2) . 
If a/bis close to v'2, then the first factor a/b + v'2 is close to 2v'2, so certainly it 
will be smaller than (say) 4. This allows us to estimate 

On the other hand, we can write 

(a) _ (a) 2 
_ a

2 
- 2b2 

f 
b - b 

-2
- b2 

Notice that the numerator a2 
- 2b

2 is a nonzero integer. (Why is it nonzero? 
Answer: Because v'2 is irrational, and so cannot equal a/b.) Of course, we don't 
know the exact value of a

2 -2b2, but we do know that the absolute value of a 
nonzero integer must be at least 1. 4 Hence 

1 
>-2· 
- b 

We now have an upper bound and a lower bound for lf(a/b)I, and if we put 
them together, we obtain the interesting inequality 

4�2 < I � - v'2j , (1) 

which is valid for every rational number a/b. Notice how this inequality comple

ments Dirichlet's inequality 

In particular, we can use (1) to show that a stronger inequality such as 

l a -v'2j < � b b3 
(2 ) 

4The fact we are using here is the seemingly trivial observation that there are no whole numbers 

lying strictly between 0 and 1. Although it seems trivial, this fact lies at the heart of all proofs of 

transcendence. It is equivalent to the fancier-sounding well-ordering property of the nonnegative 
integers, which asserts that any set of nonnegative integers has a smallest element. 
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can have only finitely many solutions. To do this, we combine the inequalities (1) 

and (2) to obtain 
1 1 

4b2 < b3' 
and hence b < 4. 

This means that the only possibilities for b are b = 1, 2, 3, and then for each value 
of b, the inequality (2) allows at most a finite number of possible values for a. In 
fact, we find that (2) has exactly three solutions: % = f, % = f, and % = ! . 

Let's review what we've done. We've used the fact that J2 is a root of the 
polynomial X2 

- 2 to deduce an inequality (1) that says that a rational number 
a/b cannot be too close to J2. Liouville's proof that the number f3 given above 
is transcendental rests on the following two legs (which might make an unsteady 
table, but is perfectly acceptable for a proof): 

(i) If a is an algebraic number, that is, if a is a root of a polynomial with integer 
coefficients, then a rational number a/b cannot be too close to a. 

(ii) For the number f3 given above, there are lots of rational numbers a/ b that are 
extremely close to f3. 

Our aim is to take these two qualitative statements and make them precise. We start 
with statement (i), whose quantification takes the following form. 

Theorem 37.2 (Liouville's Inequality). Let a be an algebraic number; say a is a 

root of the polynomial 

having integer coefficients. Let D be any number with D > d (i.e., D is larger 

than the degree of the polynomial f ). Then there are only finitely many rational 

numbers a/b that satisfy the inequality 

l
a

_,.,1< 2_ b u. 
- bD. 

Proof The fact that X =a is a root off (X) means that when we divide f (X) by 
X - a, we get a remainder of 0. In other words, f (X) factors as 

f(X) = (X - a)g(X) 

for some polynomial 
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For example, the algebraic number {/7 is a root of the polynomial X3 - 7, and 
when we divide X3 - 7 by X - {.17, we obtain the factorization 

Notice that the coefficients e1, ... , ed won't be integers, but this won't cause any 
problems for us. 

Suppose now that a/ b is a solution to the inequality 

' a _r.,, < 2_ 
b UC - bD. 

If we substitute X = a/b into the factorization f (X) = (X - a)g(X) and take 
absolute values, we obtain the fundamental formula 

The importance of this formula is that the right-hand side is small if a/bis close 
to a, while the left-hand side is a rational number. The next two things we need to 
do are find an upper bound for I g (a/ b) I and a lower bound for If (a/ b) I· 

We start with the latter. If we write out f(a/b) and put it over a common 
denominator, we obtain 

f (�) =Co (�) d 
+ c1 (�) d-l 

+ C2 (�) d-2 
+ ... + Cd-1 � +Cd 

coad + ciad-lb + c2ad-2b2 + · · · + cd-1abd-l + cd
bd 

bd 

Note that the numerator of this fraction is an integer, and so as long as it isn't zero, 
we see that 

[We deal later with the case that f (a/b) = 0.] We can illustrate this using our 
example f(X) = X 3 - 7 from before, 

a3 - 7b3 1 
b3 > b3. 

Next we want an upper bound for g (a/ b) . The fact that a/ b is a solution to the 
inequality ( * ) certainly implies that 

l a/bl < la l + 1, 
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so we can estimate 

305 

I (a)I lal
d-l 

lal
d-2 

lal
d-3 

lal g b < Je1J b + Je
2
J b + Je3J b + · · · + Je

d-
11 b +Je

d
i 

< Je1J(JaJ + l)d-l + Je
2
J(JaJ + l)d-2 + Je3J(JaJ + l)d-3 + · · · 

+ I e
d-

1 I (I a I + 1) + I e
d 
I . 

This last quantity is rather messy, but whatever it equals, it has one tremendously 
important property: It doesn't depend on the rational number 

a
/b. In other words, 

we have shown that there is a positive number K such that if 
a
/b is any solution to 

the inequality ( * ) , then 
j
g
(
a
/b) j < K. 

Again we illustrate this estimate with our example f(X) = X3 - 7, where we use 
the bound Ja

/bJ < ift + 1. Thus 

lg (�)I< 
1�1

2 + T71�1+019 

< (T7+1)2+T7(T7+1) + 019 
< 17.717, 

so for this example we could take K = 17.717. 
We now have 

The Inequality ( * ) : 

A Factorization Formula: 

A Lower Bound: 

An Upper Bound: 

Putting them together yields 

Since we are told that D > d, we can isolate b on the left-hand side to obtain the 
upper bound 

b < Kl
/(D-d). 

To illustrate this using our example a= ift and f (X) = X3 - 7, we have d = 3, 
and we found that we can take K = 17.717, so if we take (say) D = 3.5, then we 
obtain the bound 

b < 17. 7171/(3.5-3) � 313.89. 
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Now you can see why it was so important that the upper bound K not depend 
on the number a/b, since it is this fact that allows us to conclude that there are 
only finitely many allowable values for b. (Note that b is necessarily a positive 
integer, since it is the denominator of the fraction a/b written in lowest terms.) 
Furthermore, for each fixed choice of b, there are only finitely many values of a 
for which the inequality ( *) holds. (In fact, if bD-l > 2, then there's at most one 
allowable a for a given b.) Returning to our example one last time, we see that 
the allowable b's are the integers 1 < b < 313, and then for each particular b, the 
corresponding allowable a's [i.e., those that are solutions to the inequality (*)]are 
those satisfying 

3r,:::; 1 3r,:::; 1 
bv' - b

2.5 <a< bv 7 + 
b

2.5. 

This shows that there are only finitely many solutions, and a quick computation (on 
a computer) reveals that for this example there are only the two solutions a/b = 
1/1 and2/1. 

We have almost completed our proof that the inequality ( *) has only finitely 
many solutions a/b. If you review what we've done so far, you'll see that what 
we have actually proved is that ( *) has only finitely many solutions satisfying 

f(a/b) f. 0. Thus we still need to deal with the roots off (X). But a polyno
mial of degree d has at most d roots of any sort, rational or irrational, so the finitely 
many rational roots off (X) don't change our conclusion that (*)has only finitely 
many solutions. D 

Liouville's Inequality says that an algebraic number a cannot be too closely 
approximated by rational numbers. The next Lemma, which is the second leg in 
our proof, says that Liouville's number /3 can be very closely approximated by lots 
of rational numbers. 

Lemma 37 .3 (Lemma on Good Approximations to {3). Let /3 be Liouville 's number 

00 1 
/3 = L ion! 

n=l 
as described above. Then for every number D > 1 we can find infinitely many 

different rational numbers a/b that satisfy the inequality 

l
a
-f3J<� b - bD. 

Proof Intuitively, Lemma 37.3 says that we can find rational numbers that are 
very, very close to /3. How might we find such good approximations? The defini
tion of 
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provides the clue. The terms in this series are decreasing very rapidly, so if we 

just take the first few terms, we should get a pretty good approximation to f3. For 

example, if we take the first four terms, then we get the rational number 

1 1 1 1 
r4 = 101i + 102i + 103! + 10

4! = 0.
110001000000000000000001

. 

Then lr4 - f31 has a decimal expansion whose first 119 decimal digits are all zero, 

so lr4 - f31 < 2 · 10-120, which is certainly very small. On the other hand, if we 

write r4 as a fraction a4/b4, we find that 

a4 110001000000000000000001 
r4 = b4 = 1000000000000000000000000' 

so its denominator b4 is "only" 1024. This may seem large, but notice that Ir 4 -!3 I < 

2 · 10-120 < l/b�, so r4 is a rather good approximation to {3. 

More generally, suppose we take the first N terms in the series and add them 

to form the rational number 

aN 1 1 1 1 
rN = bN = 101! + 102! + 103! + ... + lON!. 

We need to estimate the size of b N and also how close r N is to f3. 

The denominators of the fractions we're adding to form rN are all powers of 10, 

so the least common denominator is the last one, 

On the other hand, the difference f3 - r N looks like 

1 1 1 
{3 - rN = lO(N+l)! + lO(N+2)! + lO(N+3)! + ... . 

Thus the first nonzero digit in the decimal expansion of f3 - r N occurs at the 
( N 

+ 
1) !th digit, and this digit is a 1. This shows that the difference f3 - r N is 

certainly smaller than the number that has a 2 as its ( N 
+ 

1) !th digit. In other 

words, 
2 

0 < {3 - rN < lO(N+l)!. 

To relate this to the value of b N, we observe that 

so we find that 
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To recapitulate, for every N > 1 we have found a rational number a N / b N such 

that aN 2 2 1 1 
Q < f3 -b < N 

+ 1 
= bN . bN < bN . N bN N N 

Furthermore, these rational numbers are all different, since their denominators 

bN = 10N! are different. Hence the rational numbers aN /bN with N > D pro

vide infinitely many solutions to the inequality 

which completes the proof of Lemma 37 .3. D 

We now have the two ingredients needed to prove that f3 is transcendental. 

Theorem 37.4 (Transcendence of f3 Theorem). Liouville's number 

CXJ 1 
/3 =Lion! n=I 

is transcendental. 

Proof We give a proof by contradiction, so we start by assuming that f3 is actually 

algebraic and try to derive a false statement. The assumption that f3 is algebraic 

means that it is a root of a polynomial 

having integer coefficients. Let D = d + 1. Then Liouville's Inequality tells us 

that there are only finitely many rational numbers a/b that satisfy the inequality 

l
a
-/31<� b - bD" 

On the other hand, Lemma 37.3 tells us that there are infinitely many rational 

numbers satisfying this inequality. This contradiction shows that f3 cannot be an 

algebraic number, which completes the proof that f3 must be a transcendental num

� D 

The proof that Liouville's number is transcendental is not easy, and you are 

to be congratulated at having reached the end of our transcendental expedition. 

But be aware that we have surveyed only a tiny sliver of the vast continent of 

transcendental numbers. 
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One of the most beautiful theorems in transcendence theory was proved inde

pendently by A.O. Gelfond and T. Schneider in 1934. They showed that if a is any 

algebraic number other than 0 or 1 and if b is any irrational algebraic number, then 

the number ab is transcendental. For example, the number 2v'2 is transcendental. 

Amazingly, the Gelfond-Schneider theorem is true even if a and b are complex 

numbers. Thus the number e 7f is transcendental, 5 since e 7f is equal to ( -1 )-i. 
Transcendence theory is today an active field of mathematical research with 

many innocuous-sounding open problems. For example, it is not known if the 

number 7r + e is transcendental; indeed, it is not even known if 7r + e is irrational! 

Exercises 

37.1. (a) Suppose that N is a positive integer that is not a perfect square. Prove that v1N 
is irrational. (Be careful not to prove too much. For example, check to make sure that 

your proof won't show that .J4 is irrational.) 

(b) Let n 2:: 2 be an integer and let p be a prime. Prove that \IP is irrational. 

(c) Let n 2:: 2 and N 2:: 2 be integers. Describe when ifN is irrational and prove that 

your description is correct. 

37.2. Let A, B, C be integers with A -=fa 0. Let r1 and r2 be the roots of the polyno

mial Ax2 +Bx+ C. Explain under what conditions r1 and r2 are rational. In particular, 

explain why they are either both rational or both irrational. 

37 .3. Give an example of a polynomial of degree 3 with integer coefficients having: 

(a) three distinct rational roots. 

(b) one rational root and two irrational roots. 

(c) no rational roots. 

(d) Can a polynomial of degree 3 have two rational roots and one irrational root? Either 

give an example of such a polynomial or prove that none exists. 

37 .4. (a) Find a polynomial with integer coefficients that has the number J2 + V13 as one 
of its roots. 

(b) Find a polynomial with integer coefficients that has the number J5 + i as one of its 

roots, where i = v=T. 

37.5. Suppose that f (X) = xd + c1xd-l + c2xd-2 + ... + Cd-lx +Cd is a polynomial 

of degree d whose coefficients c1, c2, ... , cd are all integers. Suppose that r is a rational 

number that is a root off (X). 
(a) Prove that r must in fact be an integer. 

(b) Prove that r must divide cd. 
5Here e = 2.7182818 ... is the base of the natural logarithms. Hermite proved that e is transcen

dental in 1873. The equality ( -1) -i = e 7r follows from Euler's identity e ifJ = cos ( ()) + i sin ( ()). 

Putting() = 7r gives ei7r = -1, and raising both sides to the -i power gives the desired formula. 
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37.6. Use the previous exercise to solve the following problems. 

(a) Find all the rational roots of X5 - X4 - 3X3 - 2X2 - 19X - 6. 
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(b) Find all the rational roots of X5 + 63X4 + 135X3 + 785X2 - 556X - 4148. 
[Hint. You can cut down on the amount of work if , as soon as you find a root r, you 

divide the polynomial by X - r to get rid of that root.] 

(c) For what integer value(s) of c does the following polynomial have a rational root: 

X5 + 2X4 - cX3 + 3cX2 + 3? 

37.7. (a) Suppose that f (X) = c0Xd + c1xd-l + c2xd-2 + · · · + cd_1X + cd is a 

polynomial of degree d whose coefficients c0, c1, c2 , ... , cd are all integers. Suppose 

that r = a/bis a rational number that is a root off (X). Prove that a must divide cd 
and that b must divide co. 

(b) Use (a) to find all rational roots of the polynomial 

8x7 - l0x6 - 3x5 + 24x4 - 30x3 - 33x2 + 30x + 9. 
(c) Let p be a prime number. Prove that the polynomial pX5 - X - 1 has no rational 

roots. 

37 .8. Let a be an algebraic number. 

(a) Prove that a+ 2 and 2a are algebraic numbers. 

(b) Prove that a+� and �a are algebraic numbers. 

(c) More generally, let r be any rational number and prove that a+r and ra are algebraic 

numbers. 

(d) Prove that a+ J2 and J2 ·a are algebraic numbers. 

(e) More generally, let A be an integer and prove that a+ VA and VA · a are algebraic 

numbers. 

(f) Try to generalize this exercise as much as you can. 

37.9. The number a= J2 + y'3 is a root of the polynomial f (X) = X4 - 10X2+1. 
(a) Find a polynomial g(X) such that f (X) factors as f (X) = (X - a)g(X). 
(b) Find a number K such that if a/bis any rational number with la/b - a l  � 1 and 

f (a/b) f. 0, then lg(a/b)I � K. 

(c) Find all rational numbers a/b satisfying the inequality 

(d) If you know how to program, redo (c) with l/b5 replaced by l/b4 ·5 . 

37.10. Let /31 and /32 be the numbers 

and 

Herek is some fixed integer with k > 2. 
(a) Prove that /31 is transcendental. (If you find it confusing to work with a general value 

fork, first try to do k = 2. Note that we already did the case k = 10.) 
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(b) Prove that /32 is transcendental.

37.11. Let /33 and f34 be the numbers

and 
00 1 

j34 = L 1Ql0n · 

n=l 
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(a) Try to use the methods of this chapter to prove that (33 is transcendental. At what

point does the proof break down? 

(b) Prove that /33 is irrational. [Hint. Assume that /33 is rational, say /33 = a/b, and look

at the highest power of 2 that must divide b.] You may have recognized the famous

number (33 = e = 2. 7182818 .... It turns out that e is indeed transcendental, but it

wasn't until 33 years after Liouville's result that Hermite proved the transcendence 

of e. 

(c) Try to use the methods of this chapter to prove that (34 is transcendental. At what

point does the proof break down? 

(d) Prove that /34 is not the root of a polynomial with integer coefficients of degree 9 or

smaller. 

37.12. Let a = r / s be a rational number written in lowest terms.

(a) Show that there is exactly one rational number a/b satisfying the inequality

la/b - al < 1/ sb. 

(b) Show that the equality I a/ b - a I = 1 / sb is true for infinitely many different rational

numbers a/b. 

37.13. (a) Prove that 1/8b2 < la/b - VIOi holds for every rational number a/b. 
(b) Use (a) to find all rational numbers a/b satisfying la/b - VIOi ::; 1/b3.

37.14. (a) If N is not a perfect square, find a specific value for K so that the inequality

K/b2 < Ja/b - v'NJ holds for every rational number a/b. (The value of K will

depend on N, but not on a or b.) 
(b) Use (a) to find all rational numbers a/b satisfying each of the following inequalities: 

(i) Ja/b - v'7J ::; l/b3 
(ii) la/b - v'51 ::; 1/b813

(c) £l Write a computer program that takes as input three numbers (N, C, e) and prints

as output all rational numbers a/b satisfying la/b - VNI ::; C /be. Your program

should check that N is a positive integer and that C > 0 and e > 2. (If e < 2, your

program should tell the user that she won't get to see all the solutions, since there are 

infinitely many!) Use your program to find all solutions in rational numbers a/b to

the following inequalities: 

(i) Ja/b - v'5731 ::; l/b3
(ii) la/b - Vi91 ::; l/b2·5

(iii) la/b - J61 ::; 8/b2·3 
[You'll need a moderately fast computer for (iii) if you try to do it directly.] 
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37 .15 . Determine which of the following numbers are algebraic and which are transcen

dental. Be sure to explain your reasoning. You may use the fact that 7r is transcendental, 

and you may use the Gelfond-Schneider theorem, which says that if a is any algebraic 

number other than 0 or 1 and if bis any irrational algebraic number, then the number ab is

transcendental. [Hint. To keep you on your toes, I've thrown one number into the list for

which the answer isn't known!] 

;nc-2 

OS ( 1T)
(a) 

v L. 

(e) y1i
(b) V2v'3
(f) 1f1T

( c) (tan 7r / 4) v'2
(g) cos ( 7r /5)

(d) 1fl 7 
(h) 2sin(7r/4) 

37 .16. A set S of (real) numbers is said to have the well-ordering property if every subset

of S has a smallest element. (A subset T of S has a smallest element if there is an element

a ET such that a< b for every other b ET.) 
(a) Using the fact that there are no integers lying strictly between 0 and 1, prove that the

set of nonnegative integers has the well-ordering property. 

(b) Show that the set of nonnegative rational numbers does not have the well-ordering

property by writing down a specific subset that does not have a smallest element. 



Chapter 38 

Binomial Coefficients 
and Pascal's Triangle 

We begin this chapter with a short list of powers of A + B. 

(A+ B)0 = 1 

(A+B)1 = A+B 
(A+ B)2 = A2 + 2AB + B2 
(A+ B)3 = A3 + 3A2 B + 3AB2 + B3 
(A+ B)4 = A4 + 4A3 B + 6A2 B2 + 4AB3 + B4 

There are many beautiful patterns lurking in this list, some fairly obvious, others 

extremely subtle. Before reading further, you should spend a few minutes looking 

for patterns on your own. 

In this chapter we investigate what happens when the quantity (A+ B)n is

multiplied out. It is clear from the above examples that we get an expression that 

looks like 

(A+ B)n = 0An + OAn-1 B + OAn-2 B2 + OAn-3 B3 + ... 

+DA2Bn-2 +DABn-1 +DBn,

where the empty boxes need to be filled in with some integers. 

Clearly, the first and last boxes are filled in with the number 1, and from the 

examples it appears that the second and next-to-last boxes should contain the num

ber n. Unfortunately, it's not at all clear what should go into the other boxes, but 

our lack of knowledge doesn't prevent us from giving these numbers a name. The 

integers that appear in the expansion of (A+ B)n are called binomial coefficients,
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because A + B is a binomial (i.e., a quantity consisting of two terms), and the 
numbers we're studying appear as coefficients when the binomial A+ B is raised 
to a power. There are a variety of different symbols commonly used for binomial 
coefficients.1 We use the symbol 

So using binomial coefficient symbols, the expansion of (A+ B ) n looks like 

To study binomial coefficients, it is convenient to arrange them in the form of a 
triangle, where the nth row of the triangle contains the binomial coefficients ap
pearing in the expansion of (A+ B )  n. This arrangement is called Pascal's Triangle 

after the seventeenth-century French mathematician and natural philosopher Blaise 
Pascal. 

(A+ B )0: (�) 
(A+ B )1: (�) G) 
(A+ B )2: (�) (i) (;) 
(A+ B )3: a) (�) (�) (�) 
(A+ B )4: (�) (i) (�) (i) (!) 

The First Five Rows of Pascal's Triangle 

We can use the list appearing at the beginning of this chapter to fill in the values. 

(A+ B )0: 1 

(A+ B )1: 1 1 

(A+ B )2: 1 2 1 

(A+ B )3: 1 3 3 1 

(A+ B )4: 1 4 6 4 1 

How might we form the next row of Pascal's Triangle? One method is simply 
to multiply out the quantity (A+ B )  5 and record the coefficients. A simpler method 

1The binomial coefficient (�) is also called a combinatorial number and assigned the symbol 
nCk. 
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is to take the already known expansion of (A + B) 4 and multiply it by A+ B to 

get (A + B) 5• Thus 

(A + B) 4 A 4 + 4A3B + 6A2B2 + 4AB3 + B4 

x A+B x A + B 

(A + B) 5 A4B + 4A3B2 + 6A2B3 + 4AB4 + B5 

A 5 + 4A4B + 6A3B2 + 4A2B3 + AB 4 

A 5 + 5A 4 B + lOA3 B2 + 10A2 B3 + 5AB 4 + B5 

So the next row of Pascal's Triangle is 

1 5 10 10 5 1 

We can use this simple idea, 

to derive a fundamental relationship for the binomial coefficients. If we multiply 

(A + B)n by A+ Bas before and equate the result with (A + B)n+l, we find that 

(�)An + G)An-lB + ... + ( n ) ABn-1 + n-1 (�)Bn 
x A + B 

(�)An B + (�)An-1 B2 +···+ ( n )ABn n-1 + (�)Bn+1 

(�)An+1 + G)AnB + G)An-1B2 +···+ (�)ABn 

(n°tl)An+l + (nil)An B + (n!l)An-1 B2 + ... + (n�l)ABn + (n+l)Bn+l n+l 
Thus, for example, 

In general, we get the following fundamental formula: 

Theorem 38.1 (Addition Formula for Binomial Coefficients). Let n > k > 0 be 

integers. Then ( n ) (n) = (n + 1) 
k-l + k k . 

The addition formula describes a wonderful property of Pascal's Triangle: Each 

entry in the triangle is equal to the sum of the two entries above it. For example, 

we found earlier that then= 5 row of Pascal's triangle is 
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I 1 I 5 I lo I lo I 5 I 1 1, 
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so then = 6 row can be computed by adding adjacent pairs in then = 5 row, as 

illustrated here: 

[n = 5 Row] 1 5 10 10 5 1 
/ \.c+/ \.c+/ \.c+/ \.c+/ \.c+/ \.c 

[n = 6 Row] 1 6 15 20 15 6 1 

This shows that 

(A+ B)6 = A6 + 6A5 B + 15A4B2 + 20A3B3+15A2 B4 + 6AB5 + B6 

without doing any algebra at all! Here is a picture of Pascal's Triangle illustrating 

the binomial coefficient addition formula. 

[n = 0] 

[n = l] 

[n = 2] 

[n = 3] 

[n = 4] 

[n = 5] 

[n = 6] 

1 
/ \.c 

1 1 
/ \.c+/ \.c 

1 2 1 
/ \.c+/ \.c+/ \.c 

1 3 3 1 
/ \.c+/ \.c+/ \.c+/ \.c 

1 4 6 4 1 
/ \.c+/ \.c+/ \.c+/ \.c+/ \.c 

1 5 10 10 5 1 
/ \.c+/ \.c+/ \.c+/ \.c+/ \.c+/ \.c 

1 6 15 20 15 6 1 
/ \.c+/ \.c+/ \.c+/ \.c+/ \.c+/ \.c+/ \.c 

Pascal's Triangle Illustrating the Rule (k�1) + (�) = (nt1) 

Our next task is to derive a completely different sort of formula for the bino

mial coefficients. This illustrates a simple but amazingly powerful method that 

appears time and again in the development of modem mathematics. Anytime you 

can compute a quantity in two different ways, comparison of the resulting formulas 

yields interesting and useful information. 

To find a new formula for the binomial coefficient G), we consider what hap

pens when we multiply out the quantity 

(A+ B)n = (A+ B)(A + B)(A + B) ···(A+ B)(A + B). 
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Let's start with the particular case of 

(A+ B)3 = (A+ B)(A + B)(A + B). 
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The product consists of a bunch of terms formed by choosing either A or B from 
the first factor, then choosing either A or B from the second factor, and finally 
choosing either A or B from the third factor. This gives a total of eight terms. How 
many of those terms are equal to A 3? The only way to get A 3 is to choose A from 
every factor, so there is only one way to get A3• 

Next consider the number of ways to get A2 B. We can get A2 B in the follow
mg ways: 

• A from the first and second factors and B from the third factor, 

(A+ B)(A + B)(A + B); 
t t t 

• A from the first and third factors and B from the second factor, 

(A+ B)(A + B)(A + B); 
t t t 

• A from the second and third factors and B from the first factor, 

(A+ B)(A + B)(A + B). 
t t t 

We have illustrated the three possibilities by highlighting and pointing to the A's 
and B's being used in each case. This shows that the coefficient of A 2 B in (A+ B) 3 
is 3, so the binomial coefficient (�) is equal to 3. 

Now we generalize this argument to count the number of different ways to get 
A k Bn-k in the product 

n factors 

(A+ B)(A + B)(A + B) ···(A+ B)(A + B). 

We can get A k Bn-k by choosing A from any k of the factors and then choosing B 
from the remaining n - k factors. So we need to count the number of ways to 
select k of the factors. Let's make one selection at a time. 

We have n choices for the first factor. Once we've made that choice, then there 
are n - 1 factors left from which to make our second choice. After we've made 
these two choices, there are n - 2 factors left from which to make our third choice, 
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and so on. There are thus 

n(n - l)(n - 2) · · · (n - k + 1) 
ways to choose k of the factors from among the collection of n factors. 
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Unfortunately, we've overcounted the number of ways to get Ak Bn-k, because 

we've made our choices in a particular order. To illustrate the problem, we return 

to our n = 3 example. In this case one way to get A 2 B is to take A from the first 

and the third factors, but we've counted this choice twice, because we counted it 

once as 

"first choose the first factor, next choose the third factor" 

and we counted it a second time as 

"first choose the third factor, next choose the first factor." 

Thus the actual number of Ak Bn-k terms in (A+ B)n is 

n(n - l)(n - 2) · · · (n - k + 1) 
divided by the number of different orders in which we can make our choices. 

Remember we're making k choices, so the number of different orders for these 

choices is k!, since we can put any of the k choices first, then any of the remain

ing k - 1 choices second, and so on. Therefore, the number of ways to get the 

term Ak Bn-k in the product (A+ B)n is equal to 

n(n - l)(n - 2) · · · (n - k + 1) 
k! 

Of course, this is precisely the binomial coefficient (�), so we have proved the 

celebrated Binomial Theorem. 

Theorem 38.2 (Binomial Theorem). The binomial coefficients in the expansion 

(A+ Bt = (�)An+ (�)An-1 B + (;)An-2B2 + ... + (:)Bn 

are given by the formula 

(n) 
= 

n( n - 1) ( n - 2) · · · ( n - k + 1) 
k k! 

n! 
k!(n - k)! · 

Proof We have already done the hard work of proving the first equality. To get 

the second formula, we simply multiply the numerator and denominator of the first 

fraction by ( n - k) ! to get 

n(n - l)(n - 2) · · · (n - k + 1) 
k! 

(n - k)! 
(n - k)! 

n! 
D 

k!(n - k)! · 
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For example, the coefficient of A4 B3 in (A+ B) 7 is equal to 

(7) = 7. 6 . 5 = 2 10 = 

35. 3 3! 6 

As another example, the coefficient of A8 B11 in (A+ B)19 is 

(19) = 19. 18. 17. 16. 15 . 14. 13. 12 . 11. 10. 9 
11 11! 

30169915 77600 
39916800 

= 

75 5 82. 
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Of course, if k is larger than n/2, as in this last example, then it is easier to first 

use the following Binomial Coefficient Symmetry Formula: 

The symmetry formula simply says that when (A + Br is multiplied out, the two 

terms Ak Bn-k and An-k Bk have the same coefficient. This is clearly true since 

there is nothing to distinguish A and B from one another. Using the symmetry 

formula, we can compute 

(19) = (19) = 19·18·17·16·15 ·14·13·12 
11 8 8! 

= 30474662 40 = 

75 5 82. 4032 0 

Binomial Coefficients Modulo p 

What happens if we reduce a binomial coefficient (�) modulo p, where pis a prime 

number? Here is what the first few lines of Pascal's triangle look like modulo 5 and 

modulo 7. 

1 1 
1 1 1 1 

1 2 1 1 2 1 
1 3 3 1 1 3 3 1 

1 4 1 4 1 1 4 6 4 1 
1 0 0 0 0 1 1 5 3 3 5 1 

1 1 0 0 0 1 1 1 6 1 6 1 6 1 
1 2 1 0 0 1 2 1 1 0 0 0 0 0 0 1 
Pascal's Triangle Modulo 5 Pascal's Triangle Modulo 7 
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Notice that the n = 5 line of the modulo 5 Pascal triangle is 1 0 0 0 0 1, and 
similarly the n = 7 line of the modulo 7 Pascal triangle is 1 0 0 0 0 0 0 1. This 
suggests that (f) should equal 0 modulo p if 1 < k < p -1. Having made this 
observation, it is easy to prove, and it gives a wonderfully simple version of the 
binomial theorem modulo p. 

Theorem 38.3 (Binomial Theorem Modulo p ). Let p be a prime number. 

(a) The binomial coefficient (f) is congruent to 

(P) _ {O (mod p) 

k 1 (mod p) 
ifl < k < p -1, 
if k = 0 or k = p. 

(b) For any numbers A and B, we have 

(A+ B)P AP+ BP (mod p) . 

Proof. (a) If k = 0 or k = p, then we know that (f) = 1. So the interesting 
problem is to find out what happens when k is between 1 and p -1. Let's take a 
particular example, say G), and try to understand what's going on. Our formula 
for this binomial coefficient is 

(7) 
= 

7 . 6 . 5 . 4 . 3 . 5 5.4.3.2.1 

Notice that the number 7 appears in the numerator and that there are no 7's in the 
denominator to cancel the 7 in the numerator. Thus G) is divisible by 7, which is 
the same as saying that it is congruent to 0 modulo 7. 

to 

This idea works in complete generality. The binomial coefficient (f) is equal 

(p) 
= 

p. (p -1). (p -2) ... (p - k + 1) 
k k·(k-l)·(k-2)···2·1 . 

Thus (f) has a p in the numerator (provided k > 1), and there are no p's in the 
denominator to cancel it (provided k < p -1). Hence (f) is divisible by p, so it is 
congruent to 0 modulo p. 

Do you see where we are using the fact that p is a prime? If it weren't a prime, 
then it might happen that some of the smaller numbers in the denominator could 
combine to cancel part or all of p. Thus our proof does not work for composite 
numbers. In other words, we have not proved that (�) 0 (mod n) for composite 
numbers n. Do you think that this more general statement is true? 
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(b) Using the Binomial Theorem and part (a), it is easy to compute 

(A+ B)P = (�)AP+ (nAP-1B + (�)AP-2B2 

+ .. · + ( p )A2BP-2 + ( p )ABP-l + (p)BP 
p-2 p-l p 

= 1 . AP+ 0 . Ap-l B + 0. AP-2 B2 

+ · · · + 0 · A2 BP-2 + 0 · ABp-l + 1 ·BP (mod p) 
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= AP + BP (mod p). D 

The formula 

(A+ B)P =AP+ BP (mod p) 

is one of the most important formulas in all of number theory. It says that the 

p1h power of a sum is congruent to the sum of the pth powers. We conclude by 

using this formula to give a new proof of Fermat's Little Theorem. You should 

compare this proof with the one that we gave in Chapter 9. Each proof reveals 

different aspects of the underlying formula. Which proof do you like best? 

Theorem 38.4 (Fermat's Little Theorem). Let p be a prime number, and let a be 
any number with a� 0 (mod p). Then 

ap-l 1 (mod p). 

Proof by Induction. We start by using induction to prove that the formula 

aP =a (modp) 

is true for all numbers a. This formula is clearly true for a = 0, which gets our 

induction started. Next suppose that we know it is true for some particular value 

of a. Then 

(a + 1 )P aP + IP (mod p) 

=a+ 1 (mod p) 

using the Binomial Theorem Modulo p 

with A = a and B = 1, 

since aP _ a (mod p) 

by the induction hypothesis. 

This completes the proof by induction of the formula 

aP =a (mod p). 
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This means that p divides aP - a, so 

p divides a (ap-l - 1). 

Since p does not divide a by assumption, we conclude that 

ap-l 
- 1 (mod p), 

which completes the proof of Fermat's Little Theorem. 

Exercises 

38.1. Compute each of the following binomial coefficients. 

(c) G�) (d) (300) 
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38.2. Use the formula G) = k!(:�k)! to prove the addition formula 

38.3. What is the value obtained if we sum a row 
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D 

of Pascal's Triangle? Compute some values, formulate a conjecture, and prove that your 

conjecture is correct. 

38.4. If we use the formula (n) 
= 

n ( n - 1) ( n - 2) · · · ( n - k + 1) 
k k! 

to define the binomial coefficient (�), then the binomial coefficient makes sense for any 

value of n as long as k is a nonnegative integer. 

(a) Find a simple formula for (k1) and prove that your formula is correct. 

(b) Find a formula for (-�12) and prove that your formula is correct. 

38.5. This exercise presupposes some knowledge of calculus. If n is a positive integer, 

then putting A = 1 and B = x in the formula for (A + B) n gives 
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In the previous exercise we noted that the binomial coefficient (�) makes sense even if n 

is not a positive integer. Assuming that n is not a positive integer, prove that the infinite 

sen es 

converges to the value ( 1 + x) n provided that x satisfies Ix I < 1. 

38.6. We proved that if p is a prime number and if 1 < k < p - 1, then the binomial 

coefficient (�) is divisible by p. 

(a) Find an example of integers n and k with 1 < k < n - 1 and (�) not divisible by n. 

(b) For each composite number n = 4, 6, 8, 10, 12, and 14, compute (�) modulo n for

each 1 < k < n - 1 and pick out the ones that are 0 modulo n. 

(c) Use your data from (b) to make a conjecture as to when the binomial coefficient (�) 
is divisible by n. 

(d) Prove that your conjecture in (c) is correct. 

38.7. (a) Compute the value of the quantity 

(
p

k l) (mod p)

for a selection of prime numbers p and integers 0 < k < p - 1, and make a conjecture 

as to its value. Prove that your conjecture is correct. 

(b) Find a similar formula for the value of 

(
p

k 2) (mod p).

38.8. We proved that (A+ B)P AP+ BP (mod p). 
(a) Generalize this result to a sum of n numbers. That is, prove that 

(b) Is the corresponding multiplication formula true, 

Either prove that it is true or give a counterexample. 



Chapter 39 

Fibonacci's Rabbits and 

Linear Recurrence Sequences 

In 1202 Leonardo of Pisa (also known as Leonardo Fibonacci) published his Liber 

Abbaci, a highly influential book of practical mathematics. In this book Leonardo 

introduced the elegant Hindu/ Arabic numerical system (the digits 1, 2, ... , 9 and a 

symbol/placeholder for 0) to Europeans who were still laboring under the handicap 

of Roman numerals. Leonardo's book also contains the following curious Rabbit 

Problem. 

In the first month, start with a pair of baby rabbits. One month later 

they have grown up. The following month the pair of grown rabbits 

produce a pair of babies, so now we have one pair of grown rabbits and 

one pair of baby rabbits. Each month thereafter, each pair of grown 

rabbits produces a new pair of babies, and every pair of baby rabbits 

grows up. How many pairs of rabbits will there be at the end of one 

year? 

The first few months of rabbit procreation are illustrated in Figure 39 .1, where 

each bunny image in Figure 39 .1 represents a pair of rabbits. If we let 

Fn = Number of pairs of rabbits after n months, 

and if we remember that each month the baby pairs grow up and that each month 

the grown pairs produce new baby pairs, we can compute the number of pairs of 

rabbits (baby and grown) in each subsequent month. Thus F1 = 1 (one baby pair) 

and F2 = 1 (one grown pair) and F3 = 2 (one grown pair plus a new baby pair) and 

F4 = 3 (two grown pairs plus a new baby pair). Continuing with this computation, 
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Month 

1 � 

2 ~ 
3 � � 

I 
4 ~ � ~ 

I I I 
5 ~ � ~ ~ 

� I h h 
6 ~ � ~ ~ � �� 

325 

� 
I 

~ 
Figure 39.1: Fibbonaci's Rabbits (each rabbit image represents a pair) 

we find that 
F1 = 0 Grown Pairs + 1 Baby Pair 1 Pair 
F2 = 1 Grown Pair + 0 Baby Pairs 1 Pair 
F3 = 1 Grown Pair + 1 Baby Pair 2 Pairs 

F4 = 2 Grown Pairs + 1 Baby Pair 3 Pairs 

Fs = 3 Grown Pairs + 2 Baby Pairs 5 Pairs 
F6 = 5 Grown Pairs + 3 Baby Pairs 8 Pairs 
F7 = 8 Grown Pairs + 5 Baby Pairs 13 Pairs 
Fs = 13 Grown Pairs + 8 Baby Pairs 21 Pairs 
F9 = 21 Grown Pairs + 13 Baby Pairs = 34 Pairs 

F10 = 34 Grown Pairs + 21 Baby Pairs = 55 Pairs 
F11 = 55 Grown Pairs + 34 Baby Pairs = 89 Pairs 
F12 = 89 Grown Pairs + 55 Baby Pairs = 144 Pairs 
F13 = 144 Grown Pairs+ 89 Baby Pairs= 233 Pairs. 
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This answers Fibonacci's question. At the end of the year (after the 12th month is 

completed) there are 233 pairs of rabbits. The Fibonacci sequence of numbers 

1, 1, 2, 3, 5, 8, 13, 21, ... 

arising from Fibonacci's Rabbit Problem has intrigued people from the thirteenth 

century up to the present day.1 

Suppose that we want to extend our list of Fibonacci numbers Fn beyond the 

12th month. Looking at our list, we see that each Fibonacci number is simply the 

sum of the previous two Fibonacci numbers. In symbols, this becomes the formula 

Notice that this isn't really aformula for Fn, because it doesn't directly give the 

value of F n. Instead it gives a rule telling us how to compute the nth Fibonacci 

number from the previous numbers. The fancy mathematical word for this sort of 

rule is a recursion or a recursive formula. 

We can use the recursive formula for Fn to create a table of values. 

n Fn n Fn n Fn 

1 1 11 89 21 10,946 

2 1 12 144 22 17,711 

3 2 13 233 23 28,657 

4 3 14 377 24 46,368 

5 5 15 610 25 75,025 

6 8 16 987 26 121,393 

7 13 17 1,597 27 196,418 

8 21 18 2,584 28 317,811 

9 34 19 4,181 29 514,229 

10 55 20 6,765 30 832,040 

The Fibonacci Numbers Fn 

The Fibonacci numbers appear to grow very rapidly. Indeed, the 3l81 Fibonacci 

number is already larger than 1 million, 

F31 = 1,346,269; 

1There is even a journal called the Fibonacci Quarterly that was started in 1962 and is devoted to 
Fibonacci's sequence and its generalizations. 
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and in 45 months (less than 4 years), 

F4s = 1,134,903,170, 
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and we have more than 1 billion pairs of rabbits! Now look how large the numbers 

become before we reach even the 200th Fibonacci number: 

F50 = 1,548,008,755,920 

F14 = 1,304,969,544,928,657 

F88 = 1,100,087,778,366,101,931 

F103 = 1,500,520,536,206,896,083,277 

Fi11 = 1,264,937,032,042,997,393,488,322 

Fi3i = 1,066,340,417,491,710,595,814,572,169 

Fi45 = 1,454,489,111,232,772,683,678,306,641,953 

F160 = 1,226,132,595,394,188,293,000,174,702,095,995 

F114 = 1,033,628,323,428,189,498,226,463,595,560,281,832 

Fisg = 1,409,869,790,947,669,143,312,035,591,975,596,518,914. 

Number theory is all about patterns, but how can we possibly find a pattern in 

numbers that grow so rapidly? One thing we can do is try to discover just how 

fast the Fibonacci numbers are growing. For example, how much larger than its 

predecessor is each successive Fibonacci number? This is measured by the ratio 

Fn/ Fn-1, so we compute the first few values. 

F3/ F2 = 2.00000 

F4/ F3 = 1.50000 

Fs/ F4 = 1.66666 

F5/ Fs = 1.60000 

F1 I F5 = 1.62500 

Fs/ F1 = 1.61538 

Fg/ Fs = 1.61904 

F10/ Fg = 1.61764 

Fn/ F10 = 1.61818 

Fi2/ Fn = 1.61797 

Fi3/ Fi2 = 1.61805 

Fi4/ Fi3 = 1.61802 

Fis/ F14 = 1.61803 

Frn/ Fis = 1.61803 
F11 / Frn = 1.61803 
Fis/ F11 = 1.61803 

It looks like the ratio Fn/ Fn-1 is getting closer and closer to some number around 

1.61803. It's hard to guess exactly what number this is, so let's see how we might 

figure it out. 

The last table suggests that Fn is approximately equal to aFn-i for some fixed 

number a whose value we don't know. So we write 
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where the squiggly equals sign means "approximately equal to." The same reason

ing tells us that 

Fn-l � aFn-2, 
and if we substitute this into Fn � aFn-1' we get 

Fn � aFn-1 � a2 Fn-2· 

So we suspect that Fn � a2 Fn-2 and Fn-l � aFn-2· We also know the 

Fibonacci recursive equation Fn = Fn-l + Fn-2, so we find that 

a2 Fn-2 � aFn-2 + Fn-2· 

Dividing by Fn-2 and moving everything to one side yields the equation 

a2 - a - 1�0. 

We know how to solve an equation like this: use the quadratic formula. 

a= 
1 + v'5 

2 
or 

1-v'5 
2 

We were looking for the value of a, but we seem to have hit the jackpot and found 

two values! Both of these values satisfy the equation a2 = a+ 1, so for any num

ber n, they both satisfy the equation 

This looks a lot like the Fibonacci recursive equation Fn = Fn-l + Fn-2· In 

other words, if we let Gn = an for either of the values of a listed above, then 

Gn = Gn-l + Gn-2· 
In fact, we can do even better by using both of the values, so we let a be the 

first value and /3 be the second value, 

a= 
1 + v'5 

2 

We now consider the sequence 

It has the property 

and 
1-v'5 /3= 

--2 
. 

n = 1, 2, 3, ... . 

Hn-l + Hn-2 = (Aan-l + B/3n-l) + (Aan-2 + B/3n-2) 

= A(an-l + an-2) + B(/3n-l + 13n-2) 

= Aan + B/3n 

=Hn, 



[Chap. 39] Fibonacci's Rabbits and Linear Recurrence Sequences 329 

so H n satisfies the same recursive formula as the Fibonacci sequence, and we are 

free to choose the numbers A and B to have any values that we want. 

The idea now is to choose A and B so that the H n sequence and the Fibonacci 

sequence start with the same two values. In other words, we want to choose A 
and B such that 

and 

This means we need to solve 

Aa + B/3 = 1 and Aa2 + B/32 = 1. 

(Remember that a and f3 are specific numbers.) These two equations are easy to 

solve. We use a2 = a + 1 and /32 = f3 + 1 to rewrite the second equation as 

A(a + 1) + B(/3 + 1) = 1. 

Subtracting the first equation from this gives 

A+B=O, so B= -A. 

Substituting B = -A into the first equation gives 

Aa - A/3 = 1, 

which lets us solve for 

A= 1/(a - /3) = 1/vf5. 

Also B = -A = -1 / v's, which gives us the formula 

The culmination of our calculations is the following beautiful formula for the 

nth term of the Fibonacci sequence. It is named after Binet, who published it 
in 1843, although the formula was known to Euler and to Daniel Bernoulli at least 

100 years earlier. 

Theorem 39.1 (Binet's Formula). The Fibonacci sequence Fn is the sequence de
scribed by the recursion 

and Fn = Fn-l + Fn-2 for n = 3, 4, 5, .... 

Then the nth term of the Fibonacci sequence is given by the formula 
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Proof For each number n = 1, 2, 3, ... , let H n be the number 

We will prove by induction on n that Hn = Fn for every number n. 

and 

First we check that 

H =-l {(l+J5)-(1-J5)}=-1 ·v'5=l 1 
J5 2 2 J5 

This shows that H 1 = F1 and H 2 = F2. 
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Now suppose that n > 3 and that Hi = Fi for every value of i between 1 

and n -1. In particular, Hn-1 = Fn-1 and Hn-2 = Fn-2· We need to prove that 

Hn = Fn. But we have already checked that 

Hn = Hn-1 + Hn-2, 

and we know from the definition of the Fibonacci sequence that 

Fn = Fn-1 + Fn-2, 

so we see that H n = F n. This completes our induction proof that H n = F n for 

every value of n. D 

Historical Interlude. The number 

l+v's 
2 

= 1.61803 ... 

is called the Golden Ratio (or the Divine Proportion) and is often attributed to the 

ancient Greeks, who assigned it the far less euphonious name of the "extreme and 

mean ratio." Various authors have attributed aesthetic merit to artistic composi

tions built on the divine proportion. For example, it has been suggested that the 

Parthenon (Figure 39 .2) was designed so that its exterior dimensions are in the 

golden ratio. Here is a small rectangle D whose sides are in the golden ratio, and 

here is a larger divinely proportioned rectangle D. Do you find the propor

tions of these rectangles to be especially pleasing to the eye? 
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Athens 

Figure 39 .2: The Parthenon 
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The Fibonacci sequence is an example of a Linear Recurrence Sequence. The 

word linear in this context means that the nth term of the sequence is a linear 

combination of some of the previous terms. Here are examples of some other 

linear recurrence sequences: 

An = 3An-l + lOAn-2 

Bn = 2Bn-l - 4Bn-2 

Cn = 4Cn-l - Cn-2 - 6Cn-3 

A2 = 3 

B2 = -2 

C2 = 0 

The method that we used to derive Binet's Formula for the nth Fibonacci number 

can be used, mutatis mutandis, 2 to find a formula for the nth term of any linear 

recurrence sequence. Of course, not all recurrence sequences are linear. Here are 

some examples of recurrence sequences that are not linear: 

Dn = Dn-l + D;_2 Di = 1 D2 = 1 

In general, there is no simple expression for the nth term of a nonlinear recurrence 

sequence. This does not mean that nonlinear sequences are uninteresting, quite the 

contrary is true, but it does mean that they are much harder to analyze than linear 

recurrence sequences. 

The Fibonacci Sequence Modulo m 

What happens to the numbers in the Fibonacci sequence if we reduce them mod

ulo m? There are only finitely many different numbers modulo m, so the values 

do not get larger and larger. As always, we start by computing some examples. 

2 A useful Latin phrase meaning "the necessary changes having been made." The implication, of 
course, is that the necessary changes are relatively minor. 
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Here's what the Fibonacci sequence modulo m looks like for the first few val

ues of m. 

Fn (mod 2) 1,1,0,1,1,0,1,1,0,1,1,0 ... 

Fn (mod 3) 1,1,2,0,2,2,1,0,1,1,2,0,2,2,1. .. 

Fn (mod 4) 1,1,2,3,1,0,1,1,2,3,1,0,1,1,2 ... 

Fn (mod 5) 1,1,2,3,0,3,3,1,4,0,4,4,3,2,0,2,2,4,1,0, 1, 1,2 ... 

Fn (mod 6) 1,1,2,3,5,2,1,3,4,1,5,0,5,5,4,3,1,4,5,3,2,5,1,0,1,1,2,3 ... 

Notice in each case that the Fibonacci sequence eventually starts to repeat. In other 

words, when we compute the Fibonacci sequence modulo m, we eventually find 

two consecutive 1 's appearing, and as soon this happens, the sequence repeats. (We 

leave as an exercise for you to prove that this always happens.) Thus there is an 

integer N > 1 such that 

Fn+N Fn (mod m) for all n = 1, 2, .... 

The smallest such integer N is called the period of the Fibonacci sequence mod
ulo m. We denote it by N ( m) . The preceding examples give us the following short 

table: 

I JV�rn) I � I : I : I �o I 2� I 
The period of the Fibonacci sequence modulo m exhibits many interesting pat

terns, but our brief table is much too short to use in making conjectures. For now 

we concentrate on the case that the modulus is a prime p. Table 39.1 lists the pe

riod N (p) for all primes p < 229. Looking at the first two columns of the table, 

we immediately notice the five values 

N(ll) = 10, N(31) = 30, N(41) = 40, N(61) = 60, N(71) = 70, 

so we might be tempted to conjecture that if p 1 (mod 10), then N(p) = p - 1. 
Unfortunately, this conjecture is not correct, since later entries in the table include 

N(lOl) = 50, N(151) = 50, N(181) = 90, and N(211) = 42. 

However, we observe that in all cases the period N (p) divides p - 1. This suggests 

that we look at the list of the primes p satisfying N (p) I p - 1, 

11,19,29,31,41,59,61, 71,79,89,101,109,131,139,149, 

151,179,181,191,199,211,229, ... 
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p N(p) p N(p) p N(p) p N(p) 

2 3 31 30 73 148 127 256 
3 8 37 76 79 78 131 130 
5 20 41 40 83 168 137 276 
7 16 43 88 89 44 139 46 
11 10 47 32 97 196 149 148 
13 28 53 108 101 50 151 50 
17 36 59 58 103 208 157 316 
19 18 61 60 107 72 163 328 
23 48 67 136 109 108 167 336 
29 14 71 70 113 76 173 348 
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p N(p) 

179 178 
181 90 
191 190 
193 388 
197 396 
199 22 
211 42 
223 448 
227 456 
229 114 

Table 39 .1: The Period of the Fibonacci Sequence Modulo the Prime p 

The pattern is obvious. These are the primes that are congruent to 1or9modulo10, 
which is the same as the set of primes that are congruent to 1 or 4 modulo 5. So 
we are led to conjecture that 

p 1 or 4 (mod 5) 
? 

====;. N(p) Ip - 1. 

How might we prove this conjecture? One idea is to use Binet's formula mod
ulo p, but Binet's formula involves VS. However, if p is congruent to 1or4 mod
ulo p, then Quadratic Reciprocity tells us that 5 is a square modulo p, so we can 
find a number that plays the role of the square root of 5 modulo p. With these ideas 
in hand, we are ready to prove our conjecture. 

Theorem 39.2 (Fibonacci Sequence Modulo p Theorem). Let p be a prime that is 
congruent to either 1 or 4 modulo 5. Then the period of the Fibonacci sequence 
modulo p satisfies 

N(p) Ip -1. 

Proof We are assuming that p = 1or4 (mod 5), so the Law of Quadratic Reci
procity (Theorem 22.1) tells us that 

G) = (k) = W or W = 

1. 

Thus 5 is a quadratic residue modulo p, so we can find a number c with the property 
that c2 = 5 (mod p). We will assume that c is odd, since if it isn't odd, we can 
always use c + p instead. Further, c "¥=- 0 (mod p), so c has a mod p inverse, which 
we denote by c-1. In other words, c-1 is a number satisfying cc-1 = 1 (mod p). 
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We now define a sequence of numbers modulo p by the formula 

-l ((l+c) n (1-c) n) Jn= c -

2
- - -

2
- (modp). 
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(Notice that this is exactly Binet's formula if we treat c as v'5.) Using the fact that 
c2 5 (mod p), it is easy to check that 

and Jn = Jn-1 + Jn-2 for all n > 3. 

Thus the sequence Jn has the same starting values and satisfies the same recursion 
as the Fibonacci sequence modulo p. It follows that 

Fn =Jn (mod p) for all n > 1. 

To simplify notation, we let 

U = l+c 

2 
and 

1-c 
V = -

2
- , 

and then 

Fn = c-1(Un -vn) (mod p). 

In particular, we can use Fermat's Little Theorem (Theorem 9.1) to deduce that 

Fi+(p-l)j = c-1(ui+(p-l)j -yi+(p-l)j) (mod p) 

_ c-1 (Ui · (UP-1 )j +Vi · (vp-l )j) (mod p) 

= c-1(Ui -Vi) (mod p) 

=Fi (modp). 

Thus the Fibonacci sequence modulo p repeats every p - 1 steps. 
However, the definition of N (p) says that the sequence repeats every N (p) 

steps, and that N (p) is the smallest such value. We divide p - 1 by N (p) to get a 
quotient and remainder 

p - 1 = N (p)q + r with 0 < r < N (p). 

Using the fact that the sequence repeats every p - 1 steps and that it also repeats 
every N (p) steps allows us to compute 

Fi Fi+(p-l)j Fi+N(p)qj+rj Fi+rj (mod p). 

Thus the Fibonacci sequence also repeats every r steps. But r < N (p), and N (p) 
is the smallest possible positive period, so we must have r = 0. Hence 

p- l = N(p)q, 

which completes the proof that N (p) divides p - 1. D 
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This concludes our discussion of the period of the Fibonacci sequence mod

ulo m, but there are many other questions to ask and many more patterns to be dis

covered. For example, are there infinitely many primes satisfying N (p) = p - 1? 

This is not currently known! In Exercises 39.13-39.16 you will be asked to inves

tigate further the values of N ( m) for both prime and composite values of m. 

Exercises 

39.1. (a) Look at a table of Fibonacci numbers and compare the values of Fm and Fmn 
for various choices of m and n. Try to find a pattern. [Hint. Look for a divisibility 

pattern.] 

(b) Prove that the pattern you found in (a) is true. 

(c) If gcd(m, n) = 1, try to find a stronger pattern involving the values of Fm, Fn, and 

Fmn· 
( d) Is the pattern that you found in ( c) still true if gcd ( m, n) "I 1? 

(e) Prove that the pattern you found in (c) is true. 

39.2. (a) Find as many square Fibonacci numbers as you can. Do you think that there are 

finitely many or infinitely many square Fibonacci numbers? 

(b) Find as many triangular Fibonacci numbers as you can. Do you think there are finitely 

many or infinitely many triangular Fibonacci numbers? 

39.3. (a) Make a list of Fibonacci numbers Fn that are prime. 

(b) Using your data, fill in the box to make an interesting conjecture: 

If Fn is prime, then n is �I ----�I· 
[Hint. Actually, your conjecture should be that the statement is true with one excep

tion.] 

(c) Does your conjecture in (b) work in the other direction? In other words, is the fol

lowing statement true, where the box is the same as in (b)? 

If n is , then F n is prime. 
�----� 

(d) Prove that your conjecture in (b) is correct. 

39.4. The Fibonacci numbers satisfy many amazing identities. 

(a) Compute the quantity F;+l - F;_1 for the first few integers n = 2, 3, 4, . . .  and try 

to guess its value. [Hint. It is equal to a Fibonacci number.] Prove that your guess is 

correct. 

(b) Same question (and same hint!) for the quantity F�+l + F� - F�_1. 
(c) Same question (and almost the same hint) for the quantity F;+2 - F;_2. 
(d) Same question (but not the same hint!) for the quantity Fn-1Fn+1 - F;. 
(e) Same question for 4FnFn-l + F;_2. [Hint. Compare the value with the square of a 

Fibonacci number.] 
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(0 Same question for the quantity F�+4 - 4F�+3 - 19F�+2 - 4F�+1 + F�. 

39.S. A Markoff triple is a solution ( x, y, z) in positive integers to the equation 

x2 + y2 + z2 
= 3xyz. 

(a) Prove that if (xo, Yo, zo) is a Markoff triple, then so is (xo, Yo, 3xozo - Yo). 
(b) Prove that (1, F2k-1, F2k+1) is a Markoff triple for all k 2: 1. 

(See Exercises 30.2 and 30.3 for other properties of the Markoff equation.) 
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39.6. The Lucas sequence is the sequence of numbers Ln given by the rules L1 1, 
L2 = 3, and Ln = Ln-1 + Ln-2· 

(a) Write down the first 10 terms of the Lucas sequence. 

(b) Find a simple formula for Ln, similar to Binet's Formula for the Fibonacci num

ber Fn. 
(c) Compute the value of L� - 5F� for each 1 < n � 10. Make a conjecture about this 

value. Prove that your conjecture is correct. 

(d) Show that L3n and F3n are even for all values of n. Combining this fact with the 

formula you discovered in ( c ), find an interesting equation satisfied by the pair of 

numbers ( � L3n, � F3n). Relate your answer to the material in Chapters 32 and 34. 

39.7. Write down the first few terms for each of the following linear recursion sequences, 

and then find a formula for the nth term similar to Binet's formula for the nth Fibonacci 

number. Be sure to check that your formula is correct for the first few values. 

(a) An = 3An-1 + lOAn-2 Ai = 1 A2 = 3 
(b) Bn = 2Bn-1 - 4Bn-2 B1 = 0 B2 = 

- 2 
(c) Cn = 4Cn-1 - Cn-2 - 6Cn-3 C1 = 0 C2 = 0 C3 = 1 

[Hint. For (b), you'll need to use complex numbers. For (c), the cubic polynomial has 

some small integer roots.] 

39.8. Let Pn be the linear recursion sequence defined by 

(a) Write down the first 10 terms of Pn. 
(b) Does the sequence behave in a strange manner? 

(c) Find a formula for Pn that is similar to Binet's formula. Does your formula for Pn 
explain the strange behavior that you noted in (b)? 

39.9. (This question requires some elementary calculus.) 

(a) Compute the value of the limit 

1. log(Fn) 
Im . n---+oo n 

Here F n is the nth Fibonacci number. 

(b) Compute limn---+oo(log(An))/n, where An is the sequence in Exercise 39.7(a). 
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(c) Compute limn-+oo(log(IBnl))/n, where Bn is the sequence in Exercise 39.7(b). 
(d) Compute limn-+oo(log(Cn))/n, where Cn is the sequence in Exercise 39.7(c). 
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39.10. Write down the first few terms for each of the following nonlinear recursion se
quences. Can you find a simple formula for then th term? Can you find any patterns in the 
list of terms? 

(a) Dn = Dn-l + D�-2 
(b) En = En-lEn-2 + En-3 

39.11. Prove that the Fibonacci sequence modulo m eventually repeats with two con
secutive 1 's. [Hint. The Fibonacci recursion can also be used backwards. Thus if you 
know the values of Fn and Fn+l• then you can recover the value of Fn-l using the for
mula Fn-1 = Fn+1 - Fn.] 

39.12. Let N = N ( m) be the period of Fibonacci sequence modulo m. 
(a) What is the value of FN modulo m? What is the value of FN-l modulo m? 
(b) Write out the Fibonacci sequence modulo m in the reverse direction, 

Do this for several values of m, and try to find a pattern. [Hint. The pattern will be 
more evident if you take some of the values modulo m to lie between -m and -1, 
instead of between 1 and m.] 

( c) Prove that the pattern you found in (b) is correct. 

39.13. The material in Table 39.2 suggests that if m ;:::: 3 then the period N(m) of the 
Fibonacci sequence modulo m is always an even number. Prove that this is true, or find a 
counterexample. 

39.14. Let N ( m) be the period of the Fibonacci sequence modulo m. 
(a) Use Table 39.2 to compare the values of N(m1), N(m2) , and N(m1m2) for various 

values of m1 and m2, especially for gcd(m1, m2) = 1. 

(b) Make a conjecture relating N(m1), N(m2), and N(m1m2) when m1 and m2 satisfy 
gcd(m1, m2) = l. 

(c) Use your conjecture from (b) to guess the values of N(5184) and N(6887). [Hint. 

6887 = 71 . 97.] 
(d) Prove that your conjecture in (b) is correct. 

39.15. Let N ( m) be the period of the Fibonacci sequence modulo m. 
(a) Use Table 39.2 to compare the values of N(p) and N(p2) for various primes p. 
(b) Make a conjecture relating the values of N (p) and N (p2) when p is a prime. 
(c) More generally, make a conjecture relating the value of N(p) to the values of all the 

higher powers N(p2), N(p3), N(p4) ... . 
(d) Use your conjectures from (b) and (c) to guess the values of N(2209), N(1024), and 

N(729). [Hint. 2209 = 472. You can factor 1024 and 729 yourself!] 
(e) Try to prove your conjectures in (b) and/or (c). 
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m N(m) m N(m) m N(m) m N(m) 
1 - 21 16 41 40 61 60 

2 3 22 30 42 48 62 30 

3 8 23 48 43 88 63 48 

4 6 24 24 44 30 64 96 

5 20 25 100 45 120 65 140 

6 24 26 84 46 48 66 120 

7 16 27 72 47 32 67 136 

8 12 28 48 48 24 68 36 

9 24 29 14 49 112 69 48 

10 60 30 120 50 300 70 240 

11 10 31 30 51 72 71 70 

12 24 32 48 52 84 72 24 

13 28 33 40 53 108 73 148 

14 48 34 36 54 72 74 228 

15 40 35 80 55 20 75 200 

16 24 36 24 56 48 76 18 

17 36 37 76 57 72 77 80 

18 24 38 18 58 42 78 168 

19 18 39 56 59 58 79 78 

20 60 40 60 60 120 80 120 

m N(m) 
81 216 

82 120 

83 168 

84 48 

85 180 

86 264 

87 56 

88 60 

89 44 

90 120 

91 112 

92 48 

93 120 

94 96 

95 180 

96 48 

97 196 

98 336 

99 120 

100 300 

Table 39 .2: The Period N ( m) of the Fibonacci Sequence Modulo m 
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39.16. Let N(m) be the period of the Fibonacci sequence modulo m. In the text we

analyzed N (p) when p is a prime satisfying p = 1 or 4 modulo 5. This exercise asks you

to consider the other primes. 

(a) Use Table 39.1 on page 333 to make a list of the periods N(p) of the Fibonacci

sequence modulo p when p is a prime number satisfying p 2 or 3 modulo 5. 
(b) If p = 1 or 4 modulo 5, we proved that N (p) divides p - 1. Formulate a similar

conjecture for the primes that satisfy p = 2 or 3 modulo 5. 
(c) Try to prove your conjecture in (b). (This is probably hard using only the tools that 

you currently know.) 

(d) The one prime that we have not considered is p = 5. For various values of c, look at

the sequence 

n · cn-l (mod 5), n = 1, 2, 3, ... ,

and compare it with the Fibonacci sequence modulo 5. Make a conjecture, and then

prove that your conjecture is correct. 



Chapter 40 

Oh, What a Beautiful Function 

A long time ago1 we found a formula for the sum of the first n integers: 

n(n+l) 1 2 1 1 + 2 + 3 + · · · + ( n - 1) + n = 2 = 2 n + 2 n.
This is a very beautiful and completely accurate formula, but there might be sit

uations where we'd pref er a formula that is less complicated, even at the cost of 

losing some accuracy. Thus we can say that 1 + 2 + · · · + n is approximately

equal to �n 2, since when n is large, the �n 2 term is much larger than the �n term.

Similarly, there is an exact formula for the sum of the first n squares that we 

proved in Chapter 26, 

12 + 22 + ... + (n _ l)2 + n2
= 

n(n + 1)(2n + 1). 
6 

If we multiply out the right-hand side, this becomes 

2 2 2 2 13 1 2 1 1 + 2 + . · · + ( n - 1) + n = 

3 
n + 2 n + 

6 
n.

The �n3 term is much larger than the other terms when n is large, so we can say

that 12 + 22 + · · · + n2 is approximately equal to �n3, and if we want to be more

precise, we can say that the difference between 12 + 22 + · · · + n2 and �n3 is

more or less a multiple of n 2.

Approximate formulas of this sort appear quite frequently in number theory, as 

well as in other areas of mathematics and computer science. They take the form 

(Complicated) ( Simple ) 
function of n = 

function of n + 
(A bound for the)

si
_
ze of the error 

1n terms of n 
1 A long time ago in a chapter far, far away ... 
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For example, 

12 + 22 + · · · + ( n - 1 )2 + n2 = 

complicated function of n 

1 3 -n 
� 
simple 

function of n 

( Error that is ) 
+ not much 

larger than n 2 
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The mathematical way to write this approximate formula is with "big-Oh" no

tation. Using big-Oh notation, the previous formula is written in the form 

1 12 + 22 + · · · + (n - 1)2 + n2 = -n3 + O(n2). 
3 

Informally, this means that the difference between 12 + 22 + · · · + n2 and �n3 is 

smaller than some fixed multiple of n2. 
The formal definition of big-Oh notation is somewhat abstract and can be con

fusing at first. But if you keep the 12 + 22 + · · · + n2 example in mind, you will 

find that big-Oh notation is not that complicated and, after some practice, it be

comes very natural. 

Definition. Suppose that f (n), g(n), and h(n) are functions. The formula 

f(n) = g(n) + O(h(n)) 

means that there is a constant C and a starting value no such that 

If (n) - g(n) I < Cjh(n) I for all n >no. 

In words, the difference between f (n) and g(n) is no larger than a constant mul

tiple of h(n). When reading the formula J(n) = g(n) + O(h(n)) aloud, we say 

that 

"f (n) equals g(n) plus big-Oh of h(n)." 

Sometimes the function g( n) is absent, which is the same as saying that g( n) = 

0 for all n, so the formula 

f(n) = O(h(n)) 
means that there is a constant C and a starting value no such that 

lf(n)I < Clh(n)I for all n > no. 

For example, 
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since2 
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for all n > 10. 

It is also very common to have formulas with h ( n) equal to the constant func

tion h(n) = 1. A common mistake is to believe that the formula 

f(n) = 0(1) 

means that f ( n) is itself constant. Nothing could be further from the truth. The 

formula f ( n) = 0 ( 1) means that If ( n) I is smaller than a constant C. For example, 

h f 
. f ( ) 

2n + 1 . . 1 
b . . h t e unction n = 1s certam y not constant, ut 1t 1s true t at 

n+2 

smce 

2n + 3 
= O(l) 

n+2 ' 

2n+ 3 
<2 for all n > 1. 

n+2 

The Fibonacci sequence 

1, 1, 2, 3, 5, 8, 13, ... 

provides another opportunity to use big-Oh notation. In Chapter 39 we proved 

Binet's beautiful formula for the nth Fibonacci number, 

The two quantities appearing in this formula have the values 

1 + v'5 
2 

= 1.618039 ... and 
1-v's 

2 
= -0.618039 . . . .  

When we take 1-2V5 and raise it to a large power, we get something that is very 

small, while 1+2V5 raised to a large power is very large. So an approximate, but 

still useful, version of Binet's formula says that 

2Note that there are lots of possible choices for C and n0. For example, we could say that 
n3 = 0(2n) since n3 :::; 10 · 2n for all n ;::: 1. But we cannot say that n3 = O(n2), since there is 
no choice of C that makes n3 smaller than Cn2 when n is large. 
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In this case, the error term 0(0.613046n) actually approaches zero extremely 

rapidly as n gets larger and larger. This contrasts with the big-Oh formula for the 

sum 12 + 22 + · · · + n2, where the error 0( n2) got larger as n increased, albeit at 

a slower rate than the main term ! n  3. 
There are many methods for discovering and for proving big-Oh formulas. One 

of the most powerful uses geometry and a little bit of calculus. We demonstrate this 

geometric method by finding a big-Oh formula for the sum 

We already know that 

1 
2 1+2+···+ n=2 n +O( n) 

so we might guess that 

This is indeed the case. 

and 

Theorem 40.1. Fix a power k > 1. Then 

Proof Let S( n) = 1 k + 2k + · · · + nk denote the sum that we are trying to esti

mate. We draw a bunch of rectangles. The first rectangle has base 1 and height 1 k, 
the second rectangle has base 1 and height 2k, the third rectangle has base 1 and 

height 3 k, and so on. Placing these rectangles side-by-side, we get the picture il

lustrated in Figure 40.1.3 Notice that if we sum the areas of all of the rectangles, 
we get precisely the quantity S( n). 

Rather than exactly computing the area inside the rectangles, we approximate 

the total rectangle area by instead computing the area of a simpler region. If we 

draw the curve y = xk, then, as you can see in Figure 40.2, the rectangles fit fairly 

snugly under the curve. And since the rectangles in Figure 40.2 lie underneath the 

curve y = xk, we know that the area inside the rectangles is smaller than the area 

under the curve. 

3In order to fit the diagram on the page, we have not drawn the rectangles in Figure 40.1 to be 
the correct size, so you should use the picture only as an aid in gaining understanding of the general 
idea. Feel free to draw your own pictures to the proper scale, say with k = 2, but be prepared to use 
a large piece of paper! 
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lk 2k 3k 4k 5k 6k 

Figure 40.1: Rectangles Whose Total Area Is 1k+2k + · · · + nk 

In other words, from the picture we have deduced that 

lk 2k k _ ( Area of ) (Area under the curve y = xk) + +···+n - < . . 
rectangles with 1 < x < n + 1 

We can use basic calculus to compute the area under the curve. 

(Area under the curve y = xk) fn+l 
with 1 < x < n + 1 = } 

1 
xk dx 
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xk+ 1 
n+ 1 

= 

1 
( ( n + 1) k+ 1 - 1) . k+l 1 k+l 

This gives us an upper bound 

(We have dropped the -1 on the right-hand side, since leaving it in gives only a 

slightly stronger estimate.) 

Similarly, if we slide the rectangles over to the left one unit, then, as illustrated 

in Figure 40.3, the rectangles completely cover the area under the curve y = xk 
between 0 < x < n. This means that the area of the rectangles is larger than the 
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Figure 40.2: Area Under Curve Is Larger Than Area of Rectangles 

area under this part of the curve, so we get a corresponding lower bound 

1 k + 2k + ... + nk = ( Area of ) 
rectangles 

> (Area under the curve y = xk) 
with 0 < x < n 

= ion xkdx 

xk+l n 

k + 1 0 

1 k+l 
-- n 
k+l 

Putting together our upper and lower bounds, we have proved that 
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We need to show that the upper bound is not too large. To do this, we use the 
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Figure 40.3: Area Under Curve Is Smaller Than Area of Rectangles 

binomial expansion (Chapter 38) for (n + l)k+l, 
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( l)k+l - k+l (k + 1) k (k + 1) k-1 
. . . (k + 1) (k + 1) n+ - n + 

1 
n + 2 n + + k 

n+ k + 1 . 

The crucial point is that the largest term is nk+l and all the other terms involve 
smaller powers of n. Hence 

(n + l)k+l_nk+l 

= e : l)nk+ e ; l)nk-1+ ... + e : l)n + G:�) 
< (k: l) n

k
+ e ; l) n

k
+ .. ·+ e : 1) n

k
+ G : �) n

k 

= (some mess involving k) · n k. 

We combine this estimate with our earlier inequality ( * ) to obtain 

0< (lk+2k+···+nk)-
k 

1 nk+l 
< (some mess involvingk) ·nk

. +1 

Of course, the "new mess" is k! 1 times the "old mess," but in any case, it only 
involves k and does not depend on n. This proves that 
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and indeed it proves something a bit stronger, since it shows that the sum of the 

k1h powers 1 k + 2k + · · · + nk is always strictly larger than 
k
�l nk+l. This com

pletes the proof of the theorem. D 

Describing How Long a Computation Will Take 

Big-Oh notation is frequently used to describe how long it takes to do a certain 

computation using a particular method. For example, suppose that we fix a num

ber a and a modulus m and that we want to compute the value of an (mod m) for 

some large value of the exponent n. How long does it take us? 

One way to do the computation is to compute 

ai =a (mod m) , and then 

a2 a ·  ai (mod m) , and then 

a3 =a · a2 (mod m) , and then ... 

Eventually we get to an, which is equal to an (mod m) . We end up having to don 

steps, where each step consists of one multiplication and one reduction modulo m. 

Assuming that each step takes a more or less fixed amount of time, the total time 

is a constant multiple of n. So the running time of this method is 0 ( n) . 
Of course, no one who has read Chapter 16 would ever use this absurdly ineffi

cient method to compute an (mod m) . The method of successive squaring allows 

us to compute a
n (mod m) much more rapidly. As described in Chapter 16, the 

method of successive squares has three pieces: 

1. Write n as a sum of powers of 2 (the binary expansion) 

n = uo + u1 · 2 + u2 · 4 + u3 · 8 + · · · + Ur · 2r, 

where Ur = 1 and every Ui is either 0 or 1. 

2. Create a table of values 

Ao= a, A1 = A6 (mod m) , A2 =AI (mod m) , 

A3 =A� (mod m) , ... , Ar= A;_1 (mod m). 

3. Compute the product 

Auo Aul Au2 Aur ( d ) o . 1 . 2 . . . r mo m . (40.1) 
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Each of the three pieces takes approximately r steps, so the total time is a constant 
multiple of r. Do you see how the number r is related to the exponent n? From the 
binary expansion ( 40 .1), the number n is at least 2r, so if we take logarithms, we 
see that4 

r < log2(n). 

Therefore, the method of successive squares allows us to compute a
n (mod m ) in 

time O(log2(n)). This is immensely faster than time O(n), since log2(n) is much 
smaller than n when n is large. 

The number log2(n) is the number of binary digits inn; that is, it's the number 
of digits when we write n using binary notation. Similarly, log10 ( n) is the number 
of decimal digits inn. So, roughly speaking, log( n) tells us each of the following 
pieces of information: 

• how much time it takes to write down the number n; 

• how long it takes us to describe the number n to another person; 

• how long it takes to input the number n into a computer or to output the 
number n from a computer 

We can summarize this by saying that it takes time O(log( n)) to describe the num
ber n. 

It is thus interesting and somewhat surprising that it only takes 0 (log ( n)) mul
tiplications to compute the quantity a

n (mod m) , since we have seen that it al
ready takes time O(log( n)) simply to input the number n. The successive squar
ing method is said to take linear time because the number of multiplications is 
at most a constant multiple of the time it takes to input the initial information. 
[Of course, if m and n are about the same size, then each multiplication takes at 
least 0 (log ( n)) steps, so the total time is at least 0 (log ( n) 

2
).] 

Let's look at another problem, that of multiplying two polynomials of degreed, 

There are 2d + 2 coefficients, so it takes time O(d) to describe the polynomials.5 

4The function log2 ( x) is the logarithm to the base 2. By definition, the value of log2 ( x) is the 

number y that is needed to make 2Y = x. 
5Notice that the degree of a polynomial plays a role similar to that played by the logarithm of a 

number. Another property shared by the degree and the logarithm is illustrated by 

deg(F(X)G(X)) = deg(F(X)) + deg(G(X)) and log(M N) = log(M) + log(N). 

Thus both the degree and the logarithm convert multiplication into addition. 
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The product of F ( X) and G ( X) is given by the formula 
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if 0 < j < d, 

If 0 < j < d, then computing Cj requires j additions and j + 1 multiplications, 

so it takes time 0 (j) to compute Cj. And if d < j < 2d, then it takes time 

0(2d -j + 1) to compute Cj. Hence the total time to compute the product H(X) 
lS 

d 2d d 2d 

� O(j) + 
j� i 

0(2d-j) 
= 

o (� j + 
j� 1

(2d-j + 1)) 
=0 (d2;d 

+ 
d2; d) =0(d2). 

Thus the time to compute F(X)G(X) is big-Oh of the square of the amount of 

time it takes to input the initial data, so we say that it takes quadratic time to 

compute the product of two polyomials. 6 

Exercises 

40.1. (a) Suppose that 

fi(n) = g1(n) + O(h(n)) and h(n) = 92(n) + O(h(n)). 

Prove that 

fi(n) + h(n) = 91(n) + 92(n) + O(h(n)). 

(b) More generally, if a and b are any constants, prove that 

afi(n) + bh(n) = ag1(n) + bg2(n) + O(h(n)). 

(Note that the constant C appearing in the definition of big-Oh notation is allowed 

to depend on the constants a and b. The only requirement is that there be one fixed 

value of C that works for all sufficiently large values of n.) 
60f course, we really mean that this particular method of computing F(X)G(X) takes quadratic 

time. There are other methods, such as Karatsuba multiplication and Fast Fourier Transforms, that 

are much faster. These fancier methods are able to multiply two polynomials in time 0 ( d log d) , 

so just slightly slower than linear time. The advantage of linear time over quadratic time is not too 

important if dis small, say d = 10 or d = 15, but if d = 10000, there is a considerable difference. 
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( c) The formula that you proved in part (b) shows that big-Oh formulas (with the same h) 
can be added, subtracted, and multiplied by constants. Is it also okay to multiply them 

by quantities that are not constant? In other words, if f(n) = g(n) + O(h(n)) and 

if k ( n) is another function of n, is it true that 

k(n)f(n) = k(n)g(n) + O(h(n))? 

If not, how about 

k(n)f(n) = k(n)g(n) + O(k(n)h(n))? 

40.2. Suppose that 

fi(n) = g1(n) + O(h1(n)) and h(n) = 92(n) + O(h2(n)). 

Prove that 

f1(n) + h(n) = 91(n) + 92(n) + O(max{h1(n),h2(n)}). 

40.3. Which of the following functions are 0 ( 1 )? Why? 

f(n) = 

3n + 17 
(a) 2n -1 (b) f ( n) = 

3n2 + 17 
2n-1 f(n) = 

3n + 17 
(c) 2n2 -1 

(d) f(n) = cos(n) 
1 

(e) f(n) = -

sin(l/n) 

1 
(f) f(n) = 

--

n · sin(l/n) 

40.4. Find a big-Oh estimate for the sum of square roots; that is, fill in the boxes in the 

following formula: 

40.S. (a) Prove the following big-Oh estimate for the sum of the reciprocals of the inte-

gers: 
1 1 1 1 1 1 + 2 + 3 + 4 + 5 + ... + 

n 
= ln( n) + 0( 1). 

[Here ln(x) is the natural logarithm of x.] 

(b) Prove the stronger statement that there is a constant / such that 

1 1 1 1 1 ( 1 ) 1 + - + - + - + - + · · · + - = ln( n) + / + 0 - . 2 3 4 5 n n 

The number/, which is equal to 0.577215664 ... , is called Euler's constant. Very 

little is known about Euler's constant. For example, it is not known whether or not/ 

is a rational number. 

40.6. Bob and Alice play the following guessing game. Alice picks a number between 1 

and n. Bob starts guessing numbers and, after each guess, Alice tells him whether he is 

right or wrong. Let G(n) be the most guesses it can take Bob to guess Alice's number, 

assuming that he uses the best possible strategy. 
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(a) Prove that G(n) = O(n). 
(b) Prove that G(n) is not 0 ( fo). 
(c) More generally, if G(n) = O(h(n)), what can you say about the function h(n)? 
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(d) Suppose that we change the rules of the game so that, after Bob guesses a number, 

Alice tells him whether his guess is too high, too low, or exactly right. Describe 

a strategy for Bob so that his number of guesses before winning satisfies G ( n) = 

O(log2(n)). [Hint. Eliminate half the remaining numbers with each guess.] 

40.7. Bob knows that the number n is composite and he wants to find a nontrivial factor. 

He employs the following strategy: Check if 2 divides n, then check if 3 divides n, then 

check if 4 divides n, etc. Let F ( n) be the number of steps it takes until he finds a factor 

ofn. 

(a) Prove that F(n) = 0 ( fo). 
(b) Suppose that, instead of checking every number 2, 3, 4, 5, 6, ... , Bob only checks 

if n is divisible by primes 2, 3, 5, 7, 11, ... . Explain why this strategy still works and 

show that the number of steps F(n) now satisfies F(n) = o(in0[) ). [Hint. You'll 

need to use the Prime Number Theorem (Theorem 13.1).] Do you think that this new 

strategy is actually practical? 

(c) Faster methods are known for solving this problem, such as the Quadratic Sieve and 

the Elliptic Curve Method. The number of steps L(n) that these methods require 

satisfies 

L(n) = 0 ( ecvfln(n)·lnln(n)) , 
where c is a small constant. Prove that this is faster than the method in (a) by showing 

that 
ecvfln(n)·ln ln(n) 

lim fo = 0. n-+oo n 
More generally, show that the limit is 0 even if the fo in the denominator is replaced 

by n"' for some (small) E > 0. 

(d) The fastest known method to solve this problem for large numbers n is called the 

Number Field Sieve (NFS). The number of steps M(n) required by the NFS is 

M(n) = 0 (ec' {/(lnn)(lnlnn)2 ) , 

where again c
' is a small constant. Prove that for large values of n the function M ( n) 

is much smaller than the big-0 estimate for L(n) in (c). 

Big-Oh notation is so useful that mathematicians and computer scientists have devised 

similar notation to describe some other typical situations. In the next few exercises, we 

introduce some of these concepts and ask you to work out some examples. 

40.8. Small-oh Notation. Intuitively, the notation o(h(n)) indicates a quantity that is 

much smaller than h ( n). The precise definition is that 

f(n) = g(n) + o(h(n)) means that lim f (n) - g(n) 
= 0. n-+oo h(n) 
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(a) Prove that n10 
= o(2n).

(b) Prove that 2n = o(n!).
2 

(c) Prove that n! = o(2n ).
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(d) What does the formula f (n) 
are o(l)? 

o(l) mean? Which of the following functions

(i) J(n) = Jn (ii) f (n) = . � ) 
sin n 

(iii) J (n) = 2n-n2

40.9. Big-Omega Notation. Big-Omega notation is very similar to big-Oh notation, ex

cept that the inequality is reversed. 7 In other words, 

J(n) = g(n) + n(h(n)) 

means that there is a positive constant C and a starting value n0 such that

jJ(n) - g(n)j > Clh(n)j for all n 2: no. 

Frequently g is zero, in which case f(n) = f1(h(n)) means that lf(n)I 2: Clh(n)I for all

sufficiently large values of n. 
(a) Prove that each of the following formulas is true. 

(i) n2 - n = n(n) (iii) 
5n - 3n

2n 
= n(2n) 

(b) If f(n) = n(h(n)) and h(n) = n(k(n)), prove that f(n) = n(k(n)). 
(c) If J(n) = f1(h(n)), is it then always true that h(n) = O(f(n))? 
(d) Let f (n) = n3 - 3n2 + 7. For what values of dis it true that f (n) = n(nd)? 
(e) For what values of dis it true that fo = f1((1og2 n)d)?
(f) Prove that the function f(n) = n · sin(n) does not satisfy f(n) = n (fo) . [Hint.

Use Dirichlet's Diophantine Approximation Theorem (Theorem 33.2) to find frac

tions p/q satisfying IP - 27rql < l/q, let n = p, and use the fact that sin(x) � x 
when x is small.] 

40.10. Big-Theta Notation. Big-Theta notation combines both big-Oh and big-Omega. 

One way to define big-Theta is to use the earlier definitions and say that 

if both 

f(n) = g(n) + 8(h(n)) 

J(n) = g(n) + O(h(n)) and f(n) = g(n) + f1(h(n)). 

7Warning: Exercise 40.9 describes what D means to computer scientists. Mathematicians typi

cally assign a different meaning to D. They take it to mean that there is a positive constant C and

infinitely many values of n such that lf(n) - g(n)I 2:: Clh(n)I. Notice the important distinction

between a statement being true for all (large) values of n and merely being true for infinitely many

values of n. 
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Or we can write everything out explicitly and define 

f(n) = g(n) + 8(h(n)) 

to mean that there are positive constants C1 and 02 and a starting value n0 such that 

for all n > no. 

(a) Prove that 
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[Hint. Use the Taylor series expansion of ln(l + t) to estimate its value when tis 
small.] 

(b) Use (a) to prove that 

In ]n3 - n2 
+ 3] = 3 ln(n) + e G). 

( c) Generalize (b) and prove that if f ( x) is a polynomial of degree d then 

log if(n)I = dln(n) + e ( 

�) 

. 
(d) If f1(n) = g1(n) + 8(h(n)) and f2(n) = g2(n) + 8(h(n)), prove that 

f1(n) = f2(n) = 91(n) + 92(n) + 8(h(n)) 

(e) If f(n) = 8(h(n)), is it then necessarily true that h(n) = 8(f (n))? 



Chapter 41 

Cubic Curves and Elliptic 
Curves 

We have now studied solutions to several different sorts of polynomial equations, 

including 

x2 + y2 = z2
x4 + y4 = z4 

x2 - Dy2 = 1 

Pythagorean Triples Equation (Chapters 2 and 3) 

Fermat's Equation of Degree 4 (Chapter 30) 

Pell's Equation (Chapters 32, 34, and 48) 

These are all examples of what are known as Diophantine Equations. A Diophan

tine equation is a polynomial equation in one or more variables for which we are to 

find solutions in either integers or rational numbers. For example, in Chapter 2 we 

showed that every solution in (relatively prime) integers to the Pythagorean triples 

equation is given by the formulas 

X =st '
82 - t2 

Y= --

2 ' 
82 + t2 

Z= ---

2 

We reached a very different conclusion in Chapter 30 concerning Fermat's equation 

of degree 4, where we showed that there were no solutions in integers with xyz #
0. Pell's equation, on the other hand, has infinitely many solutions in integers, and

we showed in Chapter 34 that every solution can be obtained by talcing a single 

basic solution and raising it to powers. 

In the next few chapters we discuss a new kind of Diophantine equation, one 

given by a polynomial of degree 3. We are especially interested in the rational 

number solutions, but we also discuss solutions in integers and solutions "mod

ulo p." Diophantine equations of degree 2 are fairly well understood by mathe

maticians today, but equations of degree 3 already pose enough difficulties to be
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topics of current research. Also, surprisingly, it is by using equations of degree 3 
that Andrew Wiles proved that Fermat's equation xn + yn = zn has no solutions 

in integers with xyz -/= 0 for all degrees n > 3. 
The degree 3 equations that we will study are called elliptic curves .1 Elliptic 

curves are given by equations of the form 

y2 = x3 + ax2 + bx + c. 

The numbers a, b, and c are fixed, and we are looking for pairs of numbers ( x, y) 
that solve the equation. Here are three sample elliptic curves: 

E1 : y2 = x3 + 1 7, 

E2 : y2 = x3 + x, 

E3: y2 = x3 - 4x2 + 16. 

The graphs of Ei, E2, and E3 are shown in Figure 41.1. We will return to these 

three examples many times in the ensuing chapters to illustrate the general theory. 

As already mentioned, we will be studying solutions in rational numbers, in 

integers, and modulo p. Each of our three examples has solutions in integers, for 

example 

E1 has the solutions (-2, 3), (-1, 4), and (2, 5), 

E2 has the solution ( 0, 0), 

E3 has the solutions (0, 4) and (4, 4). 

We found these solutions by trial and error. In other words, we plugged in small 

values for x and checked to see if x3 + ax2 + bx + c turned out to be a perfect 

square. Similarly, checking a few small rational values for x, we discover the ra

tional solution ( 1/4, 33 / 8) to E1. How might we go about creating more solutions? 
A principal theme of this chapter is the interplay between geometry and number 

theory. We've already seen this idea at work in Chapter 3, where we used the 

geometry of lines and circles to find Pythagorean triples. Briefly, in Chapter 3 we 

took a line through the point ( -1, 0) on the unit circle and looked at the other point 

where the line intersected the circle. By taking lines whose slope was a rational 

number, we found that the second intersection point had x, y-coordinates that were 

1Contrary to popular opinion, an elliptic curve is not an ellipse. You may recall that an ellipse 

looks like a squashed circle. This is not at all the shape of the elliptic curves illustrated in Figure 41.1. 

Elliptic curves first arose when mathematicians tried to compute the circumference of an ellipse, 

whence their somewhat unfortunate moniker. A more accurate, but less euphonious, name for elliptic 

curves is abelian varieties of dimension one. 
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Ei : y2 = x3 + 17 E2: y2 = x3 + x E3 : y2 = x3 - 4x2 + 16 

Figure 41.1: Graphs of Three Representative Elliptic Curves 

rational numbers. In this way we used lines through the one point ( -1, 0) to create 

lots of new points with rational coordinates. We want to use the same sort of 

method to find lots of points with rational coordinates on elliptic curves. 

Let's try the exact same idea using the elliptic curve 

Ei : y2 = x3 + 1 7. 

We draw lines through the point P = (-2, 3) and see what other points we find. 

For example, suppose we try the line with slope 1, 

y- 3 = x + 2. 

To find the intersection of this line with E1, we substitute y = x + 5 into the equa

tion for E1 and solve for x. Thus, 

y2 = x3 + 17 

(x + 5 ) 2 = x3 + 17 

0 = x3 - x2 - 1 Ox - 8 

The equation for Ei. 

Substitute in the equation of the line. 

Multiply out and combine terms. 

You probably don't know how to find the roots of cubic polynomials,2 but in this 

instance we already know one of the solutions. The elliptic curve E1 and the line 

2There actually is a cubic formula, although it is considerably more complicated than its cousin, 

the quadratic formula. The first step in finding the roots of x3 + Ax2 +Bx+ C = 0 is to make the 

substitution x = t - A/3. After some work, the equation fort looks like t3 +pt+ q = 0. A root of 

this equation is then given by Cardano's formula 

t = \j-q/2 + Jq2 /4 + p3 /27 + \j-q/2 - Jq2 /4 + p3 /27. 
There is a yet more complicated quartic formula for the roots of fourth-degree polynomials, but that 

is where the story ends. In the early 1800s, Niels Abel and Evariste Galois showed that there are 

no similar formulas giving the roots of polynomials of degree 5 or greater. This result is one of 

the great triumphs of modem mathematics, and the tools that were developed to prove it are still of 

fundamental importance in algebra and number theory. 
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both go through the point P = ( -2, 3), so x = -2 must be a root. This allows us 
to factor the cubic polynomial as 

x3 - x2 - lOx - 8 = (x + 2)(x2 - 3x - 4). 

Now we can use the quadratic formula to find the roots x = -1 and x = 4 of 
x2 - 3x - 4. Substituting these values into the equation of the line y = x + 5 then 
gives they-coordinates of our new points (-1, 4) and (4, 9) . You should check 
that these points do indeed satisfy the equation y2 = x3 + 1 7. 

This looks good, but before we become overconfident, we should try (at least) 
one more example. Suppose we take the line through P = (-2, 3) having slope 3. 
This line has equation 

y-3=3 (x+2 ) , 

which, after rearranging, becomes 

y = 3x + 9. 

We substitute y = 3x + 9 into the equation for E1 and compute. 

y2= x3+17 

(3x + 9)2 = x3 + 17 

The equation for E1. 

Substitute y = 3x + 9. 

0 = x3 - 9x2 - 54x - 64 Expand and combine terms. 

Factor out the known root. 0 = (x + 2)(x2 - llx - 32) 

Just as before, we can use the quadratic formula to find the roots of x2 - 1 lx - 32, 
but unfortunately what we find are the two values 

11 ± V249 
x= ----

2 

This is obviously not the sort of answer we were hoping for, since we are looking 
for points on E1 having rational coordinates. 

What causes the problem? Suppose that we draw the line L of slope m through 
the point P = (-2, 3) and find its intersection with E1. The line Lis given by the 
equation 

L :y - 3= m(x+2). 

To find the intersection of L and E1, we substitute y = m (x + 2) + 3 into the 
equation for E1 and solve for x. When we do this, we get the following formidable-
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looking cubic equation to solve: 

y2=x3+17 

( m ( x + 2) + 3) 2 = x3 + 17 
0 = x3 - m2x2 - (4m2 + 6m)x - (4m2 + 12m - 8). 

Of course, we do know one root is x = -2, so the equation factors as 

0 = (x + 2)(x2 - (m2 + 2)x - (2m2 + 6m - 4)). 
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Unfortunately for our plans, the other two roots are unlikely to be rational numbers. 

It looks like the idea of using lines through known points to produce new points 

has hit a brick wall. As is so often the case in mathematics (and in life?), stepping 

back and taking a slightly wider view reveals a way to clamber over, squeeze under, 

or just plain walk around the wall. In this case, our problem is that we have a cubic 

polynomial, and we know that one of the roots is a rational number; but this leaves 

the other two roots as solutions of a quadratic polynomial whose roots may not 

be rational. How can we compel that quadratic polynomial to have rational roots? 

Harking back to our work in Chapter 3, we see that if a quadratic polynomial has 

one rational root then the other root will also be rational. In other words, we really 

want to force the original cubic polynomial to have two rational roots, and then the 

third one will be rational, too. 

This brings us to the crux of the problem. The original cubic polynomial had 

one rational root because we chose a line going through the point P = ( -2, 3), 
thereby ensuring that x = -2 is a root. To force the cubic polynomial to have 

two rational roots, we should choose a line that already goes through two rational 

points on the elliptic curve E1. 

An example illustrates this idea. We start with the two points P = ( -2, 3) and 

Q = ( 2, 5) on the elliptic curve 

E1 : y2 = x3 + 17. 

The line connecting P and Q has slope (5 - 3)/(2 - (-2)) = 1/2, so its equation 

lS 

1 
y = 

2
x +4. 

Substituting this into the equation for E1 gives 

y2 = x3 + 17 

Gx+4Y =x3+11 

3 
1 

2 0 = x - 4x - 4x + 1. 
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This must have x = -2 and x = 2 as roots, so it factors as 

0 = (x - 2)(x + 2) ( x - D. 
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Notice that the third root is indeed a rational number, x = 1/ 4, and substituting 

this value into the equation of the line gives the corresponding y-coordinate, y = 

33/8. In summary, by taking the line through the two known solutions (-2, 3) and 

(2, 5), we have found the rational solution (1/4, 33/8) for our elliptic curve. This 

procedure is illustrated in Figure 41.2. 

Figure 41.2: Using Two Known Points to Find a New Point 

Suppose that we try to repeat this procedure with the new solution (1/4, 33/8). 
If we draw the line through (-2, 3) and (1/4, 33/8), say, we know that the third 

intersection point with E1 is the point (2, 5). So we end up back where we started. 

Again it seems we are stuck, but again a simple observation sets us moving again. 

This simple observation is that if ( x, y) is a point on the elliptic curve E1 then the 

point ( x, -y) is also a point on E1. This is clear from the symmetry of E1 about 

the x-axis (see Figure 41.2). So what we do is take the new point (1/ 4, 33/8), 
replace it with (1/4, -33/8), and then repeat the above procedure using the line 

through (1/4, -33/8) and (-2, 3). This line has slope -19/6 and is given by the 

equation y = -19x/6 - 10/3. Substituting into the equation for E1, we end up 

having to find the roots of 

3 36 1 2 190 53 
x --x --x + -. 

36 9 9 
Two of the roots are 1/4 and -2, so we can divide this cubic polynomial by 

(x - 1/4)(x + 2) to find the other root, 

x3 -
3:

6
1 

x2 -
1 :o

x + 
5: = ( x - D ( x + 2) ( x -

1 �6 ) . 



[Chap. 41] Cubic Curves and Elliptic Curves 359 

This gives x = 106/9, and substituting this value of x into the equation of the 

line gives y = -1097 /27. So we have found a new point (106/9, -1097 /27) 
satisfying the equation 

E1 : y2 
= x3 + 17. 

Continuing in this fashion, we find lots and lots of points. In fact, just as 

with Pell's equation, we get infinitely many points with rational coordinates. For 

Pell's equation, we showed that all solutions can be obtained by taking powers 

of a single smallest solution. It turns out that every point on E1 with rational 

coordinates can be found by starting with the two points P and Q, connecting 

them by a line to find a new point, reflecting about the x-axis, drawing more lines 

through the known points to find new points, reflecting again, and repeating the 

process over and over. The important point to observe here is that every point on 

E1 with rational coordinates can be obtained by starting with just two points and 

repeatedly applying a simple geometric procedure, just as every solution to Pell's 

equation was obtained by starting with one basic solution and repeatedly applying 

a simple rule. The fact that the infinitely many rational solutions to E1 can be 

created from a finite generating set is a special case of a famous theorem. 

Theorem 41.1 (Mordell's Theorem). (L.J. Mordell, 1922) Let E be an elliptic 
curve given by the equation 

E : y2 
= x3 + ax2 + bx + c, 

where a, b, c are integers such that the discriminant 

i6.(E) = -4a3c + a2b2 - 4b3 - 27c2 + l8abc 

is not zero. 3 Then there is a finite list of solutions 

with rational coordinates such that every rational solution to E can be obtained 
starting from these r points and repeatedly taking lines through pairs of points, 
intersecting with E, and reflecting to create new points. 

Mordell proved his theorem in 1922. Unfortunately, the proof is too compli

cated for us to give in detail, but the following outline of Mordell's proof shows 

that it is nothing more than a fancy version of Fermat's descent method: 

3If �(E) = 0, then the cubic polynomial x3 + ax2 +bx+ c has a double or triple root, and the 

curve E either crosses itself or has a sharp point. (See Exercise 41.7.) The discriminant �(E) will 

appear in several guises as we continue our study of elliptic curves. 
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( 1) The first step is to make a list P1, P2, ... , Pr of "small" points on E having 

rational coordinates. 

(2) The next step is to show that if Q is any point with rational coordinates that 

is not in the list, then it is possible to choose one of the Pi's so that the line 

through Pi and Q intersects E in a third point Q' that is "smaller" than Q. 

(3) Repeating this process, we get a list of points Q, Q', Q", Q"', ... of decreas

ing size, and we show that eventually the size gets so small that we end up 

with one of the Pi' s in our original list. 

Notice the similarity to our work on Pell's equation, where we showed that any 

large solution is always the product of a smaller solution and the smallest solution. 

Of course, it's not even clear what "larger" and "smaller" mean for points with 

rational coordinates on an elliptic curve E. This is one of the many ideas that 

Mordell had to work out before his proof was complete. 

Let's take a look at some of the rational solutions to E1. We start with P1 = 
(-2, 3) and P2 = (-1, 4). The line through P1 and P2 intersects E1 in a third 

point, which we reflect about the x-axis and call P3. Next we take the line through 

the points P1 and P3, intersect it with E1, and reflect across the x-axis to get P4. 

Using the line through P1 and P4, we similarly get P5, and so on. The following are 

the first few Pn's. As you can see, the numbers get complicated with frightening 

rapidity. 

P1 = (-2, 3), P2 = (-1, 4), P3 = (4, -9), P4 = (2, 5), 

R = (� -33) R = (106 1097) F = (-2228 -63465) 
5 4' 8 ' 6 9 ' 27 ' 7 961 ' 29791 ' 

F = (76271 -21063928) R = ( -9776276 54874234809) 
8 289 ' 4913 ' 9 6145441 ' 15234548239 ' 

p = (3497742218 -215890250625095) 10 607770409 ' 14983363893077 . 

We would like a quantitative way to measure the "size" of these points. One way to 

do this is to look at the numerator and denominator of the x-coordinates. In other 

words, if we write the coordinates of Pn as 

p = (An Cn) n Bn' Dn 
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n size(Pn) 
1 2 

2 1 

3 4 

4 2 

5 4 

6 106 

7 2228 

8 76271 

9 9776276 

10 3497742218 

11 1160536538401 
12 1610419388060961 

13 43923749623043363812 

14 102656671584861356692801 

15 18531846858359807878734515284 

16 370183335711420357564604634095918 

17 125067940343620957546805016634617881761 

18 14803896396546295880463242120819717253248409 

19 41495337621274074603425488675302807756680196997372 

20 83094719816361303226380666143399722139698613105279866991 

Table 41.1: The Size of Points P n on E1 

in lowest terms, we might define the size of Pn to be4 

For example, 

and 

size(Pn) =maximum of IAnl and IBnl· 

size(P1) = max{I - 21, Ill}= 2 

size(P1) = max{I - 22281, 19611} = 2228. 

The first 20 Pn's together with their sizes are listed in Table 41.1. 
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Do you see any sort of pattern in Table 41.1? The actual numbers don't seem 

to follow a pattern, but try moving back a little bit and squinting while staring at 

the table. Imagine that the numbers are solid black boxes and look at the curve that 

separates the black area from the white area. Does it look familiar? If not, look 

4The mathematical term for what we are calling the size is the height. 
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Table 41.2: The Size of Points Pn on E1 
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at Table 41.2, which extends Table 41.1 up to n < 50 with the digits replaced by 

black boxes. 

The curve separating the black region from the white region looks very much 

like a parabola (lying on its side). What this means is that the number of digits in 

size(Pn) looks like cn2 for some constant c. Using more advanced methods, it is 

possible to show that c is approximately 0.1974.5 In other words, for large values 

of n, the size of Pn looks like 

#of digits in size(Pn) � 0.1974n2, 

size(Pn) � 100.1974n2 
� (1.574)n2. 

It is instructive to compare this with the solutions to Pell' s equation that we found 

in Chapter 32. We showed there that the size of the nth solution (xn, Yn) to Pell's 

equation x2 - 2y2 = 1 is approximately 

The exponential growth rate for Pell's equation is quite rapid, but it pales in com

parison to the speed with which the points on an elliptic curve grow. 

5The value of c is computed with the theory of canonical heights developed by Andre Neron and 

John Tate in the 1960s. Using this theory, we can show that the ratio ln(size(Pn))/n2 gets closer 

and closer to 0.4546168651 ... as n gets larger and larger. 
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Exercises 
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41.1. For each of the following pairs of points on the elliptic curve E1 : y2 
= x3 + 17, use 

the line connecting the points to find a new point with rational coordinates on E1. 
(a) The points (-1,4) and (2,5) 
(b) The points ( 43, 282) and (52, -375) 
(c) The points (-2, 3) and (19/25, 522/125) 

41.2. The elliptic curve 
E : y2 

= x3 + x - 1 

has the points P = (1, 1) and Q = (2, -3) with rational coordinates. 
(a) Use the line connecting P and Q to find a new point Ron E having rational coordi

nates. 

(b) Let R' be the point obtained by reflecting R through the x-axis. [That is, if R = 

(x, y), then R' = (x, -y).] Use the line through P and R' to find a new point S with 
rational coordinates on E. 

(c) Same as (b), but use the line through Q and R' to find a new point T. 

(d) Let S be the point you found in (b), and let S' be the point obtained by reflecting S 

through the x-axis. What point do you get if you use the line through P and S' to 
find a new point on E? 

41.3. Suppose that Q1, Q2, Q3, ... is a list of points with rational coordinates on an elliptic 
curve E, and suppose that their sizes are strictly decreasing, 

size(Q1 ) > size(Q2 ) > size(Q3) > size(Q4) > · · · . 

Explain why the list must stop after a finite number of points. In other words, explain why 
a list of points with strictly decreasing sizes must be a finite list. Do you see why this 
makes the size a good tool for proofs by descent? 

41.4. Write a short biography of Girolamo Cardano, including especially a description of 
his publication of the solution to the cubic equation and the ensuing controversy. 

41.5. (This exercise is for people who have taken some calculus.) There is another way 
to find points with rational coordinates on elliptic curves that involves using tangent lines. 
This exercise explains the method for the curve 

E : y2 
= x3 - 3x + 7. 

(a) The point P = (2, 3) is a point on E. Find an equation for the tangent line L to the 
elliptic curve E at the point P. [Hint. Use implicit differentiation to find the slope 
dy/dx at P.] 

(b) Find where the tangent line L intersects the elliptic curve E by substituting the equa
tion for L into E and solving. You should discover a new point Q with rational 
coordinates on E. (Notice that x = 2 is a double root of the cubic equation you need 
to solve. This reflects the fact that Lis tangent to E at the point where x = 2.) 
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(c) Let R be the point you get by reflecting Q across the x-axis. [In other words, if 
Q = (x1 , Y1), let R = (x1 , -y1).] Take the line through P and Rand intersect it 
with E to find a third point with rational coordinates on E. 

41.6. Let L be the line y = m ( x + 2) + 3 of slope m going through the point ( -2, 3). This 
line intersects the elliptic curve E1 : y2 = x3 + 17 in the point (-2, 3) and in two other
points. If all three of these points have rational coordinates, show that the quantity 

m4 + 12m2 + 24m - 12 

must be the square of a rational number. Substitute in values of m between -10 and 10 to 
find which ones make this quantity a square, and use the values you find to obtain rational 
solutions to y2 = x3 + 17. 

41.7. The discriminant of each of the curves 

and 

is zero. Graph these two curves and explain in what way your graphs are different from 
each other and different from the graphs of the elliptic curves illustrated in Figure 41.1. 

41.8. Il Let a, b, c be integers, let E be the elliptic curve 

E : y2 = x3 + ax2 + bx + c, 

and let P1 = (x1 , Y1) and P2 = (x2, Y2) be points on E with coordinates that are rational
numbers. 

(a) Let L be the line connecting P1 and P2. Write a program to compute the third point 
P3 = (x3, y3) where the line L intersects E. (If L is a vertical line, then there
won't be a real third intersection point, so your program should return a warning 
message.) You should keep track of the coordinates as rational numbers; if your 
computer language won't let you work with rational numbers directly, you'll have 
to store a rational number A/ B as a pair (A, B), in which case you should always 
cancel gcd(A, B). 

(b) Modify your program so that the output is the reflected point (x3, -y3). We denote
this point with the suggestive notation P1 E9 P2, since it is a sort of "addition" rule for
the points of E. 

(c) Let E be the elliptic curve 

E : y2 = x3 + 3x2 - 7x + 3,

and consider the points P = (2, -3), Q = (37 /36, 53/216), and R = (3, 6). Use 
your program to compute 

QEBR, and PE9R. 

Next compute 
(P E9 Q) E9 R and PE9(QE9R). 

Are the answers the same regardless of the order in which you "add" the points? Do 
you find this surprising? (If not, try proving that the corresponding fact is true for 
every elliptic curve.) 
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41.9. 

il. 

For this exercise you will need to use a computer package that handles integers

with arbitrarily many digits. Let E be the elliptic curve 

E: y2 = x3 + 8.

Starting with the two points P1 = ( 1, 3) and P2 = ( - ±, - 183 ) on E, take the line

through P1 and P2, find the third point where it intersects E, reflect about the x-axis and

call the new point P3. Repeat the process with P1 and P3 to get P4, then with P1 and P4 to

get P5, and so on up to, say, P20. The coordinates of the points will get very complicated,

so have your computer program output a table with the following data (I've provided the 

first four entries for you): 

n ln size(Pn) ln size( Pn) / n2 
1 0.0000 0.0000 

2 1.9459 0.4865 

3 6.0707 0.6745 

4 10.3441 0.6465 

Does the quantity ln size( P n) / n 2 appear to approach a finite nonzero limit? Does the list

of points on E grow slower or faster than the list of points (Table 41.1) that we found on 

the curve E1 : y2 = x3 + 17?



Chapter 42 

Elliptic Curves with Few 
Rational Points 

The elliptic curve E1 with equation y2 
= x

3 + 1 7 has lots of points with rational
coordinates. On the other hand, the elliptic curve E2 with equation y2 

= x
3 + x 

appears to have very few such points. In fact, the only point that is immediately 
visible is the point (0, 0). We show that this is indeed the only rational point on E2.

Theorem 42.1. The only point with rational coordinates on the elliptic curve 

is the point (x, y) = (0, 0). 

Proof Suppose that (A/ B, C / D) is a point on E2 with rational coordinates, where
we write the fractions A/ B and C / D in lowest terms. In particular, we take the 

denominators B and D to be positive. Our task is to show that A = 0 and C = 

0. Substituting x = A/ B and y = C / D into the equation for E2 and clearing
denominators, we get the equation 

02 B3
= A3 D2 + AB2 D2.

Any solution in integers to this equation (with B and D not zero) gives a rational 
point on E2.

The equation ( *) contains a lot of divisibility information from which we draw 
numerous conclusions. For example, factoring the right-hand side of (*)gives 
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so D2 A divides C2 B3. However, we know that gcd ( C, D) = 1, so D2 must divide 

B3. Similarly, rearranging ( * ) and factoring gives 

so B2 divides A 3 D2. Since gcd( A, B) = 1, it follows that B2 must divide D2, 

which of course means that B divides D. We have verified that 

and BI D. 

Let v = D / B, so we know that vis an integer . Substituting D = Bv into the 

relation D2J B3 tells us that B2v2I B3, so v2I B. In other words, we can write Bas 

B = v2z for some integer z. Notice D = Bv = v3z. Substituting B = v2z and 

D = v3 z into the equation ( * ) yields 

C2 B3 
= A 3 D2 + AB2 D2 

C2( v2z) 3 
= A3( v3z) 2 + A( v2z) 2( v3z) 2 

C2z = A3 + Av4z2, 

and rearranging gives 

Thus, z divides A3. However, z also divides Band gcd(A, B) = 1, so we must 

have z = ± 1. On the other hand, B = v2 z and we know that B is positive, so in 

fact z = 1. We now know that 

B = v2 and 

so our original point (A/ B, C / D) on E2 looks like (A/ v2, C / v3) , and the equa

tion ( * ) becomes 

Factoring the right-hand side, we see that 

This is a very interesting equation, because it expresses the perfect square C2 

as the product of the two numbers A and A 2 + v4. I claim that these two numbers 

have no common factors . Do you see why? Well, if A and A 2 + v4 were to have 

a common factor, say they were both divisible by some prime p, then v would also 
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have to be divisible by p. However, A and v can't both be divisible by p, since the 

fraction A/ B = A/v2 is written in lowest terms. 

So we now know that A and A 2 + v4 have no common factors, their product is 

a perfect square, and it is clear from the formula C2 = A (A 2 + v4) that they are 

both positive. The only way that this can happen is if each of them individually is 

a square. (Does this reasoning look familiar? We used it long ago in Chapter 2 to 

derive a formula for Pythagorean triples.) In other words, we can find integers u 
and w such that 

A= u2 and 

Substituting the value A = u2 into the second equation gives 

u4 + v4 = w2. 

Let's recapitulate our progress. We began with some solution to the elliptic 

curve E2, which we wrote as (A/ B, C / D) in lowest terms. Starting from this 

solution, we showed that there must be integers u, v, and w satisfying the equation 

u4 + v4 = w2. 

Furthermore, given such integers u, v, w, we can recover the solution to E2 from 

the formulas A/ B = u2 / v2 and C / D = uw / v3. Do you recognize this u, v, w 
equation? It should look familiar, since it is exactly the equation that we studied in 

Chapter 30, where we showed that the only solutions are those with either u = 0 
or v = 0. Since u = 0 leads to (A/ B, C / D) = (0, 0) and v = 0 leads to zeros in 

the denominator, it follows that the only point with rational coordinates on E2 is 

the point ( 0, 0). This completes our proof. D 

We now tum to our third representative elliptic curve 

E3 : y
2 
= x3 - 4x

2 
+ 16. 

A brief search reveals four points on E3, 

P1=(0,4), P2=(4,4), P3=(0,-4), P4=(4,-4). 

What happens if we use these four points and play the same game that we played 

on E1? The line connecting P1 and P2 has equation y = 4. To find where this line 

intersects E3, we substitute y = 4 into the equation of E3 and solve for x: 

42 = x
3 

- 4x2 + 16, 

0 = x
3 

- 4x2 = x2 ( x - 4). 
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Notice that x = 0 is a double root, so the line connecting P1 and P2 intersects E3 

only at P1 and P2. The game is lost; we've failed to find any new points. A similar 

thing happens if we choose any two of P1, P2, P3, P4, connect them with a line, 

and compute the intersection of the line with E3. We never find any new points. In 

fact, it turns out that the only points on E3 with rational coordinates are the four 

points P1, P2, P3, P4. (Unfortunately, the proof is too long for us to give.) 

More generally, a finite collection of points 

(with t > 3) on an elliptic curve 

E : y2 
= x

3 
+ ax2 + bx + c 

is called a torsion collection if, whenever you draw a line L through two of the Pi 's, 

all intersection points of L and E are already in the collection. Another way to say 

this is that a torsion collection cannot be enlarged using the geometric method of 

taking lines and intersections. For example, E3 has the torsion collection consisting 

of the four points ( 0, ±4), ( 4, ±4). The following important theorem describes 

torsion collections. 

Theorem 42.2 (Torsion Theorem). Let E : y2 
= x

3 
+ ax2 + bx + c be an elliptic 

curve with integer coefficients a, b, c, and let P1, P2, ... , Pt be a torsion collection 

on E consisting of points whose coordinates are rational numbers. Also let 

fl(E) = -4a3c + a2b2 - 4b3 - 27c2 + 18abc 

be the discriminant of E, and suppose that fl(E) -/= 0. 

(a) (Nagell-Lutz Theorem, 1935/37) Write the coordinates of each Pi as Pi 

(xi, Yi)· Then all the Xi's and Yi 's are integers. Furthermore, if Yi -/= 0, then 
YI J 16fl(E). 

(b) (Mazur's Theorem, 1977) A torsion collection can contain at most 15 points. 

The N agell-Lutz portion of the Torsion Theorem says that points in a torsion 

collection have integer coordinates. We've also seen examples of points with inte

ger coordinates that do not lie in a torsion collection, such as the point ( -2, 3) on 

the curve E1 : y2 
= x

3 
+ 17. Our investigations have unearthed quite a few points 

with integer coordinates on E1, including 

(-2,±3), (-1,±4), (2,±5), (4,±9), 
(8, ±23), (43, ±282), (52, ±375). 
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We know that the curve E1 has infinitely many points with rational coordinates, 

so there's no reason why it shouldn't be possible to extend this list indefinitely. 

Continuing our search, we soon find another integer point on E1, 

(5234, ±378661), 

but after that we find no others, even if we search up to x < 10100. Eventually, we 

begin to suspect that there are no other integer points on E1. This turns out to be 

true; it is a special case of the following fundamental result. 

Theorem 42.3 (Siegel's Theorem). (C.L. Siegel, 1926) Let Ebe an elliptic curve 

E : y2 = x3 + ax2 + bx + c 

given by an equation whose coefficients a, b, and c are integers and with discrimi
nant fl(E) -/= 0. Then there are only finitely many solutions in integers x and y. 

Siegel actually gave two very different proofs of his theorem. The first, pub

lished in 1926 in the Journal of the London Mathematical Society,1 works directly 

with the equation for E and uses factorization methods. The second proof, pub

lished in 1929, begins with Mordell's theorem and uses the geometric method for 

generating new points from old points. Ultimately, however, both proofs rely on 

the theory of Diophantine approximation (Chapter 33), specifically on advanced 

results which say that certain numbers cannot be closely approximated by rational 

numbers. 

Exercises 

42.1. A Pythagorean triple (a, b, c) describes a right triangle whose sides have lengths that 

are integers. We will call such a triangle a Pythagorean triangle. Find all Pythagorean 

triangles whose area is twice a perfect square. 

42.2. (a) Let Ebe the elliptic curve E: y2=x3+1. Show that the points (-1, 0), (0, 1), 
(0, -1), (2, 3), (2, -3) form a torsion collection on E. 

(b) Let E be the elliptic curve E : y2 = x3 - 43x + 166. The four points (3, 8), 
(3, -8), ( -5, 16), and (-5, -16) form part of a torsion collection on E. Draw lines 

through pairs of these points and intersect the lines with E to construct the full torsion 

collection. 

(c) Let Ebe an elliptic curve given by an equation 

y2 = (x - a)(x - ,B)(x - f'). 

Verify that the set of points (a, 0), (fJ, 0), (!', 0) is a torsion collection. 

1 In both England and Germany in the 1920s, there was still a great deal of lingering bitterness 

from World War I, so Siegel published his article using the pseudonym "X". 
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42.3. How many integer solutions can you find on the elliptic curve 

y2 = x3 - l6x + 16? 

42.4. This exercise guides you in proving that the elliptic curve 

E: y2 = x3 + 7

371 

has no solutions in integers x and y. (This special case of Siegel's Theorem was originally 
proven by V.A. Lebesgue in 1869.) 

(a) Suppose that (x, y) is a solution in integers. Show that x must be odd. 
(b) Show that y2 + 1 = (x + 2)(x2 - 2x + 4). 
(c) Show that x2 - 2x + 4 must be congruent to 3 modulo 4. Explain why x2 - 2x + 4 

must be divisible by some prime q satisfying q - 3 (mod 4). 
(d) Reduce the original equation y2 = x3 + 7 modulo q, and use the resulting congruence 

to show that -1 is a quadratic residue modulo q. Explain why this is impossible, 
thereby proving that y2 = x3 + 7 has no solutions in integers. 

42.5. The elliptic curve E : y2 = x3 - 2x + 5 has the four integer points P = (- 2, ±1) 
and Q = (1, ±2). 

(a) Find four more integer points by plugging in x = 2, 3, 4, ... and seeing if x3 - 2x + 5 

1s a square. 
(b) Use the line through P and Q to find a new point R having rational coordinates. 

Reflect R across the x-axis to get a point R'. Now take the line through Q and R' 
and intersect it with E to find a point with rather large integer coordinates. 

42.6. (a) Show that the equation y2 = x3 + x2 has infinitely many solutions in integers 
x, y. [Hint. Try substituting y = tx.] 

(b) Does your answer in (a) mean that Siegel's Theorem is incorrect? Explain. 
( c) Show that the equation y2 = x3 - x2 - x + 1 has infinitely many solutions in integers 

x,y. 

42.7. Let E : y2 = x3 + ax2 + bx + c be an elliptic curve with a, b, and c integers. 
Suppose that P = ( � , g) is a point on E whose coordinates are rational numbers, written 
in lowest terms with B and D positive. Prove that there is an integer v such that B = v2 
andD = v3. 

0 42.8. � Write a program to search for all points on the elliptic curve 

E : y2 = x3 + ax2 + bx + c 

such that x is an integer and lxl < H. Do this by trying all possible x values and checking 
if x3 + ax2 + bx + c is a perfect square. 

Test your program on the curve 

y2 = x3 - 112x + 400. 

How many integer points do you find with H = 100? H = 1000? H = 10000? H = 

100000. 
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r� 

42.9. 

do 

(a) Write a program to search for points on the elliptic curve

E : y2 = x3 + ax2 + bx + c

372 

such that x and y are rational numbers. Exercise 42.7 says that any such point must

look like ( x, y) = (A/ D2, B / D3), so the user should input an upper bound H and

your program should loop through all integers J A J < H and 1 < D < VJi and check

if 

A3+aA2D2+bAD4+cD6

is a perfect square. If it equals B2, then you've found the point (A/ D2, B / D3).
(b) Use your program to find all points on the elliptic curve 

y2 = x3 - 2x2 + 3x - 2

whose x-coordinate has the form x =A/ D2 with JAi < 1500 and 1 < D < 38.



Chapter 43 

Points on Elliptic Curves 

Modulo p 

It can be quite difficult to solve a Diophantine equation. So rather than trying to 

solve using integers or rational numbers, we treat the Diophantine equation as a 

congruence and try to find solutions modulo p. This is a far easier task. To see 

why, consider the following example. 

How might we find all solutions "modulo 7" to the equation 

x2 
+ y2

= 1? 

In other words, what are the solutions to the congruence 

x2 
+ y2 1 (mod 7)?

This question is easy; we can just try each pair ( x, y) with 0 < x, y < 6 and see 

which ones make the congruence true. Thus, ( 1, 0) and ( 2, 2) are solutions, while 

(1, 2) and (3, 2) are not solutions. The full set of solutions is 

(0, 1),(0,6), (1,0), (2,2), (2,5),(5,2),(5,5), (6,0). 

We conclude that the equation x2 
+ y2

= 1 has 8 solutions modulo 7. Similarly, 

there are 12 solutions modulo 11, 

(0,1),(0, 10), (1,0), (3,5), (3,6), (5,3),(5,8), 

(6,3), (6,8), (8,5), (8,6),(10,0). 

Now we look at some elliptic curves and count how many points they have 

modulo p for various primes p. We begin with the curve 

E2: y2
= x3 

+ x
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p 

2 

3 

5 

7 

11 

13 

17 

19 

Points modulo p on E2 : y
2 

= x3 + x 

(0,0), (1,0) 

(0,0), (2, 1),(2,2) 

(0,0), (2,0),(3,0) 

(0,0), (1,3),(1,4),(3,3), (3,4),(5,2), (5,5) 

(0,0), (5,3),(5,8), (7,3), (7,8), (8,5), (8,6), 
(9,1), (9, 10), (10,3), (10,8) 

(0,0), (2,6),(2, 7),(3,2), (3, 11), (4,4),(4,9), 
(5,0), (6, 1), (6, 12), (7,5), (7,8), (8,0), (9,6), 
(9, 7),(10,3),(10,10),(11,4),(11,9) 

(0,0), (1,6),(1, 11), (3,8), (3,9), 
(4,0), (6, 1), (6,16), (11,4), (11, 13), 
(13,0),(14,2),(14,15),(16, 7),(16,10) 

(0,0), (3, 7),(3, 12), (4, 7), (4, 12), (5,4), (5,15), 
(8,8), (8, 11), (9,4), (9, 15), (12, 7), (12, 12), 
(13,5),(13,14),(17,3),(17,16),(18,6),(18,13) 

Table 43.1: Points Modulo p on E2 

374 

Np 

2 

3 

3 

7 

11 

19 

15 

19 

whose lone rational point is (0, 0). However, as Table 43.1 indicates, E2 tends to 

have lots of points modulo p. In the last column of Table 43.1 we have listed NP, 

the number of points modulo p. 

The number of points modulo p on an elliptic curve exhibits many wonderful 

and subtle patterns. Look closely at Table 43.1. Do you see any patterns? If 

not, maybe some more data would help. Table 43.2 gives the number of solutions 

modulo p without bothering to list the actual solutions. 

One partial pattern that immediately strikes the eye is that there are many 

primes for which NP is equal top. This occurs for the primes 

p = 2, 3, 7, 11, 19, 23, 31, 43, 47, 59, 67, and 71, 

which is surely too often to be entirely random. Indeed, aside from the initial 

entry 2, this list is precisely the set of primes (less than 71) that are congruent to 3 
modulo 4. So we are led to make the following guess: 

Guess. If p 3 (mod 4), then the elliptic curve E2 : y
2 

= x3 + x has 

exactly NP = p points modulo p. 
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p 2 3 5 7 11 

Np 2 3 3 7 11 

p 31 37 41 43 47 

Np 31 35 31 43 47 

13 17 19 23 

19 15 19 23 

53 59 61 67 

67 59 51 67 

Table 43.2: The Number of Points Np on E2 Modulo p 

375 

29 

19 

71 

71 

What about the other primes, those congruent to 1modulo4? The Np's in this case 

look fairly random. Sometimes NP is less than p, such as for p = 5 and 17, while 

sometimes Np is greater than p, such as for p = 13 and 53. However, it also seems 

to be true that asp gets larger Np also becomes larger. In fact, Np is usually found 

hovering in the general neighborhood of p. A little thought suggests why this is 

very reasonable. 

In general, if we are trying to find the solutions modulo p to an elliptic curve 

y2 
= x3 + ax2 + bx + c, 

we substitute x = 0, 1, 2, ... ,p - 1 and check, for each x, whether 

x3 + ax2 + bx + c 

turns out to be a square. It is reasonable to suppose that the values we get for 

x3 + ax2 +bx+ c are essentially randomly distributed, so we would expect the 

values to be squares about half the time and to be nonsquares about half the time. 

This follows from the fact, proved in Chapter 20, that half the numbers from 1 to 

p - 1 are quadratic residues and the other half are nonresidues. We also observe 

that if x3 + ax2 + bx + c happens to be a square, say it is congruent to t2 (mod p ), 

then there are two possible values for y: y = t and y = -t. In summary, approxi

mately half of the values of x give two solutions modulo p, and about half give no 

solutions modulo p, so we would expect to find approximately 2 x !P = p solu

tions. Of course, this argument doesn't prove that there are always exactly p solu

tions; it merely gives a hint why the number of solutions should be more or less in 

the neighborhood of p. 

All this suggests that it might be interesting to investigate the difference be

tween p and Np. We write this difference as 
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p 5 13 17 29 37 

NP 3 19 15 19 35 

ap 2 -6 2 10 2 

p 97 101 109 113 137 

NP 79 99 115 127 159 

ap 18 2 -6 -14 -22 

41 53 61 

31 67 51 

10 -14 10 

149 157 173 

163 179 147 

-14 -22 26 

Table 43.3: The p-Defect ap = p - Np for E2 
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73 89 

79 79 

-6 10 

181 193 

163 207 

18 -14 

and call it the p-defect of E2.1 Table 43.3 lists the p-defects for the elliptic curve E2. 
This table exhibits a subtle pattern that is closely related to a topic that we studied 
earlier. Take a few minutes to see if you can discover the pattern yourself before 
reading on. 

During our number theoretic investigations, we found that the primes that are 
congruent to 1 modulo 4 display many interesting properties. One of the most 
striking was our discovery in Chapter 24 that these are the primes that can be 
written as a sum of two squares p = A 2 + B2. For example, 

Furthermore, Legendre's theorem in Chapter 36 tells us that if we require A to be 
odd and A and B both positive, then there is only one choice for A and B. [In the 
notation of Theorem 36.5, R (p) = 8(D1 - D3) = 8, where the 8 is accounted for 
by switching A and B and/or changing their signs.] Compare these formulas with 
the values a5 = 2, ai3 = -6, a11 = 2, and a29 = 10. Now do you see a pattern? It 
looks as if, when we write p = A 2 + B2 with A positive and odd, ap is either 2A 
or -2A. Another way to say this is that it appears that the quantity p - (ap/2)2 is 
always a perfect square. We check this for a few more values of p: 

Amazingly, the pattern continues to hold. 

1The actual mathematical name for the quantity ap is the trace of Frobenius, a terminology whose 

full explication is unfortunately beyond the scope of this book. However, if you wish to impress 

your mathematical friends or kill a conversation at a cocktail party, try casually venturing a remark 

concerning "the trace of Frobenius acting on the £-adic cohomology of an elliptic curve." 
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p 5 13 17 29 37 

ap/2 1 -3 1 5 1 

p 97 101 109 113 137 

ap/2 9 1 -3 -7 -11 

41 53 61 

5 -7 5 

149 157 173 

-7 -11 13 

Table 43.4: The Value of ap/2 for E2 

73 

-3 

181 

9 

One question remains. When does ap = 2A and when does ap 
Looking at Table 43.3, we see that 

89 

5 

193 

-7 

ap = 2A for p = 5,17,29,37,41,61,89,97,101,173,181, 

ap = -2A for p = 13, 53, 73, 109, 113, 137, 149, 157, 193. 

377 

-2A? 

These two lists don't seem to follow any orderly pattern. However, if we look at 

the values of ap/2 listed in Table 43.4, a pattern emerges. 

Every ap/2 value is congruent to 1 modulo 4. So if we write p = A2 + B2 
with A positive and odd, then ap = 2A if A _ 1 (mod 4) and ap = -2A if 

A - 3 (mod 4). The following statement summarizes all our conclusions. 

Theorem 43.1 (The Number of Points Modulo p on E2 : y2 = x3 + x ). 
Let p be an odd prime, and let NP denote the number of points modulo p on the 

elliptic curve E2 : y2 = x3 + x. 
(a) If p = 3 (mod 4), then NP= p. 

(b) If p _ 1 (mod 4), write p = A2 + B2 with A positive and odd. (We know 

from Chapter 24 that this is always possible.) Then NP = p ± 2A, where the 

sign is chosen negative if A - 1 (mod 4) and positive if A - 3 (mod 4). 

The first part is comparatively easy to verify, but we omit the proof because we 

will be proving a similar result later. The second part is considerably more difficult, 

so we are content to illustrate it with one more example. The prime p = 130657 is 

congruent to 1 modulo 4. Using trial and error, a computer, or the method described 

in Chapter 24, we write 130657 = 1112 + 3442 as a sum of two squares. Now 

111 _ 3 (mod 4), so we conclude that E2 has 130657 + 2 · 111 = 130879 points 

modulo 130657. 
Next we look at our old friend, the elliptic curve 

E1 : y2 = x3 + 1 7. 
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p 2 3 5 7 11 

Np 2 3 5 12 11 

ap 0 0 0 -5 0 

p 31 37 41 43 47 

Np 42 48 41 56 47 

ap -11 -11 0 -13 0 

p 73 79 83 89 97 

Np 63 75 83 89 102 

ap 10 4 0 0 -5 

13 17 19 23 29 

20 17 26 23 29 

-7 0 -7 0 0 

53 59 61 67 71 

53 59 48 62 71 

0 0 13 5 0 

101 103 107 109 113 

101 110 107 111 113 

0 -7 0 -2 0 

Table 43.5: The Number of Points Modulo p and Defect ap for E1 
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Just as we did for E2, we make a table giving the number of points Np on E1 
modulo p and the defect ap = p - NP. The values are listed in Table 43.5. 

Again there are many primes for which the defect ap is zero: 

p= 2,3,5,11,17,23,29,41,47,53,59,71,83,89,101,107,113. 

These primes don't follow any pattern modulo 4, but they do follow a pattern mod

ulo 3. Aside from 3 itself, they are all congruent to 2 modulo 3. So we might guess 

that if p = 2 (mod 3) , then Np = p. We can use primitive roots to verify that this 

guess is correct. 

Theorem 43.2. If p 2 (mod 3) , then the number of points NP on the elliptic 

curve 

E1 : y2 = x3 + 1 7 modulo p 

satisfies Np = p. 

Proof Before trying to give a proof, let's look at an example. We take the prime 

p = 11. To find the points modulo 11 on Ei, we substitute x = 0, 1, ... , 10 into 

x3 + 17 and check if the value is a square modulo 11. Here's what happens when 

we substitute: 

x (mod 11) 0 1 2 3 4 5 6 7 8 9 10 

x3 (mod 11) 0 1 8 5 9 4 7 2 6 3 10 

x3+17 (mod 11) 6 7 3 0 4 10 2 8 1 9 5 
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Notice that the numbers x3 (mod 11) are just the numbers 0, 1, ... , 10 rearranged, 
and the same for the numbers x3 + 17 (mod 11). So when we look for solutions 
to 

y2=03+17(mod11), y2=13+17(mod11), y2=23+17(mod11), 

y2 33 + 17 (mod 11), y2 103 + 17 (mod 11), 

we're really just looking for solutions to 

y2 = 0 (mod 11), 

y2 3 (mod 11), 

y2 = 1 (mod 11), y2 = 2 (mod 11), 

y2 10 (mod 11), 

The first congruence, y2 0 (mod 11), has one solution, y 0 (mod 11). As 
for the other 10 congruences, we know from Chapter 20 that half of the numbers 
from 1 to 10 are quadratic residues modulo 11, and the other half are nonresidues. 
So half of the congruences y2 a (mod 11) have two solutions (remember that 
if b is a solution then so is p - b ), and half of them have no solutions. So overall 
there are 1 + 2 · 5 = 11 solutions. 

If you try a few more examples, you'll find that the same phenomenon occurs. 
Of course, you must stick with primes p 2 (mod 3); the situation is entirely 
different for primes p 1 (mod 3), as you can check for yourself by computing 
x3 + 17 (mod 7) for x = 0, 1, 2, ... , 6. 

So we try to show that if p = 2 (mod 3) then the numbers 

03 + 1 7, 1 3 + 1 7, 23 + 1 7, ... , (p - 1) 3 + 1 7 (mod p) 

are the same as the numbers 

0, 1, 2, ... ,p - 1 (mod p) 

in some order. Notice that each list contains exactly p numbers. So all that we need 

to do is show that the numbers in the first list are distinct, since that will imply that 
they hit all the numbers in the second list. 

Suppose we take two numbers from the first list, say by+ 17 and b� + 17, and 
suppose that they are equal modulo p. In other words, 

bf + 1 7 b� + 1 7 (mod p), so bf b� (mod p) . 

We want to prove that bi = b2. If bi = 0 (mod p), then b2 = 0 (mod p), and 
vice-versa, so we may as well assume that bi ¢. 0 (mod p) and b2 ¢. 0 (mod p) . 

We would like to take the cube root of both sides of the congruence 

bf= b� (mod p), 
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but how? The answer is to apply Fermat's Little Theorem bP-1 = 1 (mod p). We 

also make use of the assumption that p = 2 (mod 3), which tells us that 3 does 

not divide p -1. Thus 3 and p -1 are relatively prime, so the Linear Equation 

Theorem (Chapter 6) says that we can find a solution to the equation 

3u - (p -1 ) v = 1. 

In fact, it's easy to write down a solution, u = (2p -1) /3 and v = 2. Of course, 

(2p -1)/3 is an integer because p = 2 (mod 3). 
Notice that 3u = 1 (mod p -1), so in some sense raising to the uth power is 

the same as raising to the 1/3 power (i.e., taking a cube root; you may recognize 

that we developed this idea in a more general setting in Chapter 17). So we raise 

both sides of the congruence b{ = b� (mod p) to the uth power and use Fermat's 

Little Theorem to compute 

(bf) u = (b�) u (mod p) 

b�u b�u (mod p) 

bl+(p-l)v = bl+(p-l)v ( d ) 1 - 2 mo p 

bi . u1i-1) v = b2 . (t'2-l) v (mod p) 

bi b2 (mod p). 

This proves that the numbers 03 + 17, 13 + 17, ... , (p -1 ) 3 + 17 are all different 

modulo p, so they must equal 0, 1, ... , p -1 in some order. 

To recapitulate, we have shown that if we substitute 

x = 0,1,2, ... ,p-1 

into x3 + 1 7 (mod p), we get back precisely the numbers 

0, 1, 2, ... p -1 (mod p). 

The congruence y2 
_ 0 (mod p) has one solution: y _ 0 (mod p). On the other 

hand, half of the congruences 

y2 
= 1 (mod p), y2 

= 2 (mod p), y2 
= 3 (mod p), ... , 

y2 
= p -2 (mod p), y2 

= p -1 (mod p) 

have two solutions, and the other half have no solutions, since half of the numbers 

are quadratic residues and the other half are nonresidues (see Chapter 20). Hence, 

the Diophantine equation y2 = x3 + 1 7 has exactly 

solutions modulo p. 

(p-1) 
Np= 1+2 · 

2 
= p 

D 
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p 2 3 5 7 11 

Np 2 4 4 9 10 

ap 0 -1 1 -2 1 

p 31 37 41 43 47 

NP 24 34 49 49 39 

ap 7 3 -8 -6 8 

13 

9 

4 

53 

59 

-6 

p 73 79 83 89 97 101 

NP 69 89 89 74 104 99 

ap 4 -10 -6 15 -7 2 

17 19 23 29 

19 19 24 29 

-2 0 -1 0 

59 61 67 71 

54 49 74 74 

5 12 -7 -3 

103 107 109 113 

119 89 99 104 

-16 18 10 9 

Table 43.6: The Number of Points Modulo p and Defect ap for E3 
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We now understand what happens on E1 modulo p for primes p 2 (mod 3). 
Exercise 43.3 asks you to discover a far more subtle pattern lurking in the ap's 

when p 1 (mod 3). 
Let's pause to review the patterns we've discovered. For the elliptic curves E1 

and E2, we've found that the p-defect ap equals 0 for about half of all primes, and 

we've been able to describe quite precisely these 0-defect primes. For the other 

primes we've seen that the ap's satisfy a more subtle pattern involving squares; 

that is, p - (ap/2)2 is a perfect square for E2, and something similar for E1 (see 

Exercise 43.3). Of course, E1 and E2 are only two elliptic curves among the myr

iad, so having discovered common patterns for E1 and E2, we should certainly 

investigate at least one or two more examples. Table 43.6 gives the number of 
points modulo p and the p-defects for the elliptic curve 

E3 : y2 = x
3 

- 4x2 + 16. 

Alas and alack, it seems that there are very few primes for which the p-defect ap 
is 0. Even if we extend our Table 43.6, we find that the only primes p < 5000 with 

ap = 0 are 

p= 2,19,29,199,569,809,l289,l439,2539,3319,3559,3919. 

These primes do all happen to be congruent to 9 modulo 10, but unfortunately there 

are lots of 9 mod 10 primes, such as 59, 79, 89, and 109, that are not in the list. 
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There doesn't appear to be a simple pattern governing which primes are in the list, 

and indeed no one has been able to find a pattern. It wasn't until 1987 that Noam 

Elkies was able to show that there are always infinitely many primes p for which 

ap = 0. 

Lacking primes with ap = 0, we might try looking for patterns involving 

squares; but again we search in vain, and no pattern emerges. In fact, what we 

find if we look at other elliptic curves is that most of them are like E3, with very 

few ap's being 0 and no patterns involving squares. The elliptic curves E1 and E2 

are of a very special type; they are elliptic curves with complex multiplication. 2 

We do not give the precise definition, but only say that elliptic curves with com

plex multiplication have half of their ap's equal to 0, while elliptic curves without 

complex multiplication have very few of their ap's equal to 0. 

Exercises 

43.1. (a) For each prime number p, let Mp be the number of solutions modulo p to the 
equation x2 + y2 = 1. Figure out the values of M3, Ms, M13, and M11. [Hint. 
Here's an efficient way to do this computation. First, make a list of all of the squares 
modulo p. Second, substitute in each 0 :::; y < p and check if 1 - y2 is a square 
modulo p.] 

(b) Use your data from (a) and the values M1 = 8 and Mll = 12 that we computed ear
lier to make a conjecture about the value of Mp. Test your conjecture by computing 
M19. According to your conjecture, what is the value of Mi373? of Mi987? 

(c) Prove that your conjecture in (b) is correct. [Hint. Formulas in Chapter 3 might be 
helpful.] 

43.2. (a) Find all solutions to the Diophantine equation y2 = x5 + 1 modulo 7. How 
many solutions are there? 

(b) Find all solutions to the Diophantine equation y2 = x5 + 1 modulo 11. How many 
solutions are there? 

(c) Let p be a prime with the property that p ¢ 1 (mod 5). Prove that the Diophantine 
equation y2 = x5 + 1 has exactly p solutions modulo p. 

43.3. For each prime p 1 (mod 3) in the table for E1, compute the quantity 4p - a;. 
Do the numbers you compute have some sort of special form? 

43.4. Il Write a program to count the number of solutions of the congruence 

E : y2 x3 + ax2 + bx + c (mod p) 

2 An elliptic curve has complex multiplication if its equation satisfies a certain special sort of 
transformation property. For example, if (x, y) is a solution to the equation E2 : y2 

= x3 + x, 
then the pair (-x, iy) will also be a solution. The presence of numbers such as i = H in these 
formulas led to the name "complex multiplication." 
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using one of the following methods: 
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(i) First make a list of the squares modulo p, then substitute x = 0, 1, . . .  , p - 1 into 
x3 + ax2 + bx + c and look at the remainder modulo p. If it is a nonzero square, 
add 2 to your list, if it is zero, add 1 to your list, and if is is not a square, ignore it. 

(ii) For each x = 0, 1, . . .  ,p- 1, compute the Legendre symbol (x3+ax:+bx+c). If it

is+ 1, add 2 to your list; if it is -1, ignore it. [And if x3 +ax2 +bx+c 0 (mod p), 
then just add 1 to your list.] 

Use your program to compute the number of points NP and the p-defect ap = p - Np for 
each of the following curves and for all primes 2 ::; p::; 100. Which curve(s) do you think 
have complex multiplication? 

(a) y2 = x3 + x2 - 3x + 11 
(b) y2 = x3 - 595x + 5586 

(c) y2 = x3 + 4x2 + 2x 
( d) y2 = x3 + 2x - 7 

43.5. In this exercise you will discover the pattern of the p-defects for the elliptic curve 
E : y2 = x3 + 1. To assist you, I offer the following list. 

p 31 37 41 43 47 53 59 61 67 71 

ap -4 -10 0 8 0 0 0 14 -16 0 

p 73 79 83 89 97 101 103 107 109 113 

ap -10 -4 0 0 14 0 20 0 2 0 

The Defect ap for the Elliptic Curve E : y2 = x3 + 1 

(a) Make a conjecture as to which primes have defect ap = 0, and prove that your 
conjecture is correct. 

(b) For those primes with ap I- 0, compute the value of 4p - a� and discover what is 
special about these numbers. 

(c) For every prime p < 113 with p 1 (mod 3), find all pairs of integers (A, B) that 
satisfy 4p = A 2 + 3B2. (Note that there may be several solutions. For example, 
4 · 7 = 28 equals 52 + 3 · 1 2 and 4 2 + 3 · 22 • An efficient way to find the solutions is to 
compute 4p - 3B2 for all B < /4'if3 and pick out those values for which 4p - 3B2 
is a perfect square.) 

(d) Compare the values of A and B with the values of ap given in the table. Make as 
precise a conjecture as you can as to how they are related. 

(e) For each of the following primes p, I have given you the pairs (A, B) satisfying 
4p = A2 + 3B2. Use your conjecture in (d) to guess the value of ap. 

(i) p = 541 (A, B) = (46, 4), (29, 21), (17, 25) 
(ii) p = 2029 (A, B) = (79, 25), (77, 27), (2, 52) 

(iii) p = 8623 (A, B) = (173, 39), (145, 67), (28, 106) 



Chapter 44 

Torsion Collections Modulo p 

and Bad Primes 

In the last chapter we found simple patterns for the p-defects of E1 and E2, but 
there did not seem to be any similar pattern for E3 . However, the NP' s for E3 do
exhibit a pattern that you may have already noticed. If not, take a moment now to 
look back at Table 43.6 and try to discover the pattern for yourself before reading 
on. 

It appears that the Np's for E3 have the property that 

Np 4 (mod 5) for all primes except p = 2 and p = 11. 

Although we won't give a full verification of this property, we can at least give 
some idea why it is true. Recall from Chapter 42 that E3 has a torsion collection 
consisting of the four points 

P1=(0,4), P2 = (0, -4), P3 = (4, 4), P4 = (4, -4). 

This means that the lines connecting any two of these points do not intersect E3 

in any additional points. The method of taking pairs of points on an elliptic curve, 
connecting them with a line, and intersecting with the curve can all be done using 
equations without any reference to geometry. This means that we can use the same 
method to find points modulo p !

Let's look at an example. The point Q = ( 1, 8) is a solution to 

y
2 x

3 
- 4x2 

+ 16 (mod 17).

The line through Q and P1 = (0, 4) is y = 4x + 4. Substituting the equation of the 
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line into the equation of the elliptic curve gives 

(4x + 4)2 = x
3 - 4x2 + 16 (mod 17) 

x
3 - 3x2 + 2x = 0 (mod 17) 

x(x - l)(x - 2) = 0 (mod 17). 
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So we get the two known points Q and P1 with x-coordinates x = 0 and x = 1, 
and we also get a new point with x = 2. Substituting x = 2 into the equation of 
the line gives y = 12, so we have found a new solution (2, 12) for E3 modulo 17. 

If we try the same idea with the points Q = (1, 8) and P3 = ( 4, 4), we get the 
line y = -(4/3)x + 28/3. How can we make sense of this line modulo 17? Well, 
the fraction -4/3 is just the solution to the equation 3u = -4. So the number 
"-4/3 modulo 17" is the solution to the congruence -3u = 4 (mod 17). We 
know how to solve such congruences; in this case, the answer is u = 10. Similarly, 
"28/3 modulo 17" is 15, so the line through Q = (1, 8) and P3 = ( 4, 4) modulo 17 

is y = lOx + 15. Now we substitute into the equation of E3 and solve as before to 
find a new solution ( 14, 2) on E3 modulo 17. 

We can also do the same thing with Q and P2, giving the solution (11, 9), 
and with Q and P4, giving the solution (15, 3). Thus, starting with the single 
solution Q, we used the four points in the torsion packet to find four more solutions. 

Now consider the curve E3 modulo p for any prime p. It already has the four 
points P1, P2, P3, P4. Each time we find another point Q on E3 modulo p, we can 
take the line Li connecting Q to each of the Pi 's. Each line Li intersects E3 in a 
new point Qi. In this way we get four additional points Qi, Q2, Q3, Q4 to go with 
the original point Q. Thus, points on E3 modulo p come in bundles of five, except 
that there are only four P/s. Hence 

{ Solutions to } 
= 
{ The 4 solutions} 

+ 
{ Bundles containing} 

E3 modulo p P1, P2, P3, P4 5 solutions each 
· 

Therefore, the total number of solutions to E3 modulo p is equal to 4 plus a multiple 
of 5; that is, Np = 4 (mod 5). This is true for all primes except p = 2 and p = 11. 
(For p = 2 and p = 11, some of the bundles of 5 points contain repetitions.) 

The congruence Np = 4 (mod 5) also explains our earlier observation about 
the primes with ap = 0. To see why, suppose that ap = 0. Then 

p =Np= 4 (mod 5). 

Furthermore, p is odd, so p = 9 (mod 10). This shows that if ap = 0 then p is 
9 modulo 10; but it does not say that every 9 modulo 10 prime has ap = 0. This is 
an important distinction that stands in sharp contrast to our results for E1 and E2. 
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The preceding argument is fine, but what about the primes p = 2 and p = 11 
that do not follow the pattern? It turns out that 2 and 11 are somewhat special for

the elliptic curve E3 : y2 = x3 - 4x2 + 16. The reason they are special is because

they are the only primes for which the polynomial x3 - 4x2 + 16 has a double or

triple root modulo p. Thus, 

x3 - 4x2 + 16 = x3 (mod 2) has a triple root x = 0, and

x3 - 4x2 + 16 = (x + 1)2(x + 5) (mod 11) has a double root x = -1. 

In general, we say that p is a bad prime for an elliptic curve

E : y2 = x3 + ax2 + bx + c 

if the polynomial x3 + ax2 + bx + c has a double or triple root modulo p. It is

not hard to find the bad primes for E, since one can show that they are exactly the

primes that divide the discriminant of E, 1 

For example, 

Exercises 

fl(E) = -4a3c + a2b2 - 4b3 - 27c2 + l8abc. 

fl(E1) = -7803 = -33 · 172, 

fl(E2) = -4 = -22,

fl(E3) = -2816 = -28 
· 11.

44.1. Suppose that the elliptic curve E has a torsion collection consisting of the t points

P1, P2, • . .  , Pt. Explain why the number of solutions to E modulo p should satisfy

NP t(modt+l). 

44.2. Exercise 42.2(c) says that the elliptic curve E : y2 
= x3 - x has a torsion collection

{ (0, 0), (1, 0), (-1, 0)} containing three points.

(a) Find the number of points on E modulo p for p = 2, 3, 5, 7, 11. Which ones satisfy

NP 3 (mod 4)? 
(b) Find the solutions to E modulo 11, other than the solutions in the torsion collection,

and group them into bundles of four solutions each by drawing lines through the 

points in the torsion collection. 

1 We've cheated a little bit in our description of the bad primes, since for various technical reasons
the prime 2 is always bad for our elliptic curves. However, it is sometimes possible to tum a bad 
prime into a good prime by using an equation for E that includes an xy term or a y term. 
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44.3. This exercise investigates the values of ap for the bad primes. 

(a) Find the bad primes for each of the following elliptic curves. 

(i) E : y2 = x3 + x2 - x + 2 
(ii) E : y2 = x3 + 3x + 4 

(iii) E : y2 = x3 + 2x2 + x + 3 

(b) For each curve in (a), compute the p-defects ap for its bad primes. 
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(c) Here are a few more sample elliptic curves, together with a list of the p-defects for 

their bad primes. 

E �(E) aP for bad primes

y2 = x3 + 2x + 3 -52. 11 a5 = -1, a11 = -1 

y2 = x3 + x2 + 2x + 3 -52. 7 a5 = 0, a7 = 1 

y2 = x3 + 5 _33. 52 a3 = 0, a5 = 0

y2 = x3 + 2x2 - 7x + 3 11. 43 au=-1, a43 = 1

y2 = x3 + 21x2 + 37x + 42 -31. 83. 239 a31 = -1, as3 = 1,
a239 = -1

Several patterns, of varying degrees of subtlety, are exhibited by the p-defects of bad 

primes. Describe as many as you can. 

44.4. For this exercise, p is a prime greater than 3. 
(a) Check that the elliptic curve y2 = x3 + p hasp as a bad prime. Figure out the value

of ap. Prove that your guess is correct. 

(b) Check that the elliptic curve y2 = x3 + x2 + p has p as a bad prime. Figure out the

value of ap. Prove that your guess is correct. 

(c) Check that the elliptic curve y2 = x3 - x2 + p hasp as a bad prime. Figure out

the value of ap. Prove that your guess is correct. [Hint. For (c), the value of ap will 

depend on p.] 



Chapter 45 

Defect Bounds and Modularity 

Patterns 

Chapters 43 and 44, despite their length, have barely begun to scratch the surface 
of the wonderful patterns lurking in elliptic curves modulo p. In this chapter we 
continue the investigation. 

We have already indicated why the number of points Np on an elliptic curve 
modulo p should be approximately equal to p, and we have found many patterns 
for the p-defect ap = p - Np. How might we quantify the statement that "Np is 
approximately p"? We could say that "ap tends to be small," but this just raises the 
question of how small. Looking at the tables for Ei, E2, and E3 in Chapter 43, 
it seems that ap can get fairly large when p is large. One thing we might do is 
study the relative size of p and ap. Table 45.1 lists those primes p for which the 

p-defect on E3 seems to be particularly large, either positively or negatively. For 
comparison purposes, we have also listed the values of JP, ifP, and log(p). 

It is clear from Table 45 .1 that although the ap 's are indeed much smaller 
than p, they can grow to be much larger than ifi5 and log(p). The ap's are also 
larger than JP, but as you will observe, they are never twice as large. In other 

words, it appears that lapl is never more than 2JP. 

Theorem 45.1 (Hasse's Theorem). (H. Hasse, 1933) Let Np be the number of 
points modulo p on an elliptic curve, and let ap = p - Np be the p-defect. Then 

In other words, the number of points Np on an elliptic curve modulo p is ap
proximately equal top, with an error of no more than 2JP. This beautiful result 
was conjectured by Emil Artin in the 1920s and proved by Helmut Hasse during 
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a
p p vP ifP 

-30 239 15.45962 6.20582 

40 439 20.95233 7.60014 

44 593 24.35159 8.40140 

50 739 27.18455 9.04097 

53 797 28.23119 9.27156 

-52 827 28.75761 9.38646 

68 1327 36.42801 10.98897 

-72 1367 36.97296 11.09829 

-68 1381 37.16181 11.13605 

-70 1429 37.80212 11.26360 

-71 1453 38.11824 11.32631 

78 1627 40.33609 11.76149 

84 2053 45.31004 12.70953 

89 2083 45.63989 12.77114 

-86 2113 45.96738 12.83216 

-91 2143 46.29255 12.89261 

93 2267 47.61302 13.13663 
-98 2551 50.50743 13.66376 

-103 3221 56.75385 14.76829 

114 3733 61.09828 15.51265 

-123 4051 63.64747 15.94119 

129 4733 68.79680 16.78980 

-132 4817 69.40461 16.88854 
132 5081 71.28113 17.19160 

138 5407 73.53231 17.55168 

-146 5693 75.45197 17.85584 

-138 5711 75.57116 17.87464 

-147 6317 79.47956 18.48575 

-146 6373 79.83107 18.54021 
164 7043 83.92258 19.16840 

153 7187 84.77618 19.29816 
162 7211 84.91761 19.31962 

log(p) 
2.37840 

2.64246 

2.77305 

2.86864 

2.90146 

2.91751 

3.12287 

3.13577 

3.14019 

3.15503 

3.16227 

3.21139 

3.31239 

3.31869 

3.32490 

3.33102 

3.35545 

3.40671 

3.50799 

3.57206 

3.60756 

3.67514 

3.68278 

3.70595 

3.73296 

3.75534 

3.75671 

3.80051 

3.80434 

3.84776 

3.85655 

3.85800 

Table 45 .1: Large Values of a
p 

for the Curve E3 : y2 = x3 - 4x2 + 16 
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the 1930s. A generalized version was proved by Andre Weil in the 1940s, and this 

was again vastly generalized by Pierre Deligne in the 1970s. 

The proof of Hasse' s Theorem for general elliptic curves is beyond our present 

means, but we can at least indicate why it is true for the elliptic curve E2 with 

equation y2 = x3 + x. Recall from Chapter 43 that the defect for this curve is 

given by the rules 

ap = 0 if p = 3 (mod 4), and 

ap = ±2A if p _ 1 (mod 4), where we write p = A2 + B2. 

If ap = 0, there is little more to be said. On the other hand, if p = 1 (mod 4), then 

we can estimate 

which is exactly Hasse's Theorem. 

The final ap pattern that we discuss is so unexpected and unusual that you may 

be amazed that anyone noticed it at all. Indeed, it took many years and indications 

from many sources before mathematicians finally began to realize that this remark

able modularity pattern might be universally true. Although we are not able to give 

a full explanation of exactly what a modularity pattern is, we can convey the flavor 

by examining our representative elliptic curve 

E3 : y2 = x3 - 4x2 + 16. 

The other quantity that we look at is the following product: 

8 = T{ (1 - T)(l - T11)} 2 { (1 - T2)(1 - T22)} 2 

x { ( 1 - T3) ( 1 - T33) } 2 { ( 1 - T4) ( 1 - T44) } 2 . . . . 

This product is meant to continue indefinitely, but if we multiply out the first fac

tors, we find that the beginning terms stabilize and don't change when we mul

tiply by additional factors. For example, if we multiply out all the factors up to 

{ (1 - T23)(1 - T253)} 2, then we get 

8 = T - 2T2 - T3 + 2T4 + T5 + 2T6 - 2T7 - 2T9 - 2T10 + T11 

_ 2T12 + 4T13 + 4T14 _ Tis _ 4T16 _ 2T17 + 4r1s 

+ 2r20 + 2r21 _ 2T22 _ T23 + . . . , 

and these first 23 terms won't change if we multiply by more factors. 
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At this point you are probably wondering what this product 8 could possibly 
have to do with the elliptic curve E3. To answer your question, here again is a list 
of the p-defects for E3 for all primes up to 23: 

a2 = 0, a3 = -1, as= 1, a1 = -2, an= 1, 

ai3 = 4, a11 = -2, a19 = 0, a23 = -1. 

Ignoring a2, can you see a relation between these ap's and the product 8? When 
we write the product 8 as a sum, it appears that the coefficient of TP is equal to ap. 
Amazingly, this pattern continues for all primes. 

Theorem 45.2 (Modularity Theorem for E3). Let E3 be the elliptic curve 

E3: y2 = x
3 - 4x2 + 16, 

and let e be the product 

8 = T{(l -T)(l - T11) } 2{( 1 - T2)( 1 - T22)} 2 

x { ( 1 -T3) ( 1 - T33) } 2 { ( 1 -T4) ( 1 -T44) } 2 . . . . 

Multiply out 8 and write it as a sum 

Then for every prime p > 3, the p-defect of E3 satisfies ap = Cp. 

In the 1950s, Yutaka Taniyama made a sweeping conjecture concerning modu
larity patterns, and during the 1960s Goro Shimura refined Taniyama's conjecture 
to the assertion that every elliptic curve should exhibit a modularity pattern. Andre 

Weil then proved a Converse Theorem that helped the conjecture of Shimura and 

Taniyama to gain widespread acceptance. 

Conjecture 45.3 (Modularity Conjecture). (Shimura, Taniyama) Every elliptic 
curve E is modular. That is, the p-defects of E exhibit a modularity pattern. 

What does it mean to say that the p-defects of an elliptic curve E "exhibit a 
modularity pattern?" It means that there is a series 

such that for (most) primes p, the coefficient Cp equals the p-defect ap of E, and 
such that e has certain wonderful transformation properties that are unfortunately 
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too complicated for us to describe precisely.1 Despite this lack of precision, I hope 
that the 8 for E3 helps to convey the flavor of what modularity means. 

Exercises 

45.1. In this exercise you will look for further patterns in the coefficients of the product 8 
described in the Modularity Theorem for E3. If we write 8 as a sum, 

8 = c1T + c2T
2 

+ c3T
3 

+ c4T4 + c5T
5 

+ · · · , 
the Modularity Theorem says that for primes p � 3 the pth coefficient cp is equal to the 
p-defect ap of E3. Use the following table, which lists the en coefficients of 8 for all 

n � 100, to formulate conjectures. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
Cn 1 -2 -1 2 1 2 -2 0 -2 -2 1 -2 4 4 -1 -4 -2 
n 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

Cn 4 0 2 2 -2 -1 0 -4 -8 5 -4 0 2 7 8 -1 4 
n 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 

Cn -2 -4 3 0 -4 0 -8 -4 -6 2 -2 2 8 4 -3 8 2 
n 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 

Cn 8 -6 -10 1 0 0 0 5 -2 12 -14 4 -8 4 2 -7 -4 
n 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 

Cn 1 4 -3 0 4 -6 4 0 -2 8 -10 -4 1 16 -6 4 -2 
n 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 

Cn 12 0 0 15 4 -8 -2 -7 -16 0 -8 -7 6 -2 -8 

(a) Find a relationship between Cm, Cn, and Cmn when gcd(m, n) = 1. 
(b) Find a relationship between cp and cP2 for primes p. To assist you, here are the values 

of cP2 for p � 37. 

C22 = 2, C32 = -2, C52 = -4, C72 = -3, 
C112 = 1, C132 = 3, C172 = -13, C192 = -19, 
C232 = -22, C292 = -29, C312 = 18, C372 = -28 

[Hint. The prime p = 11 is a bad prime for E3, so you may want to treat c112 as 
experimental error and ignore it!] 

1 For those who have had some complex analysis, here is the main part of the modularity condi

tion. We think of 8 as being a function of T, and we set f ( z) = 8 ( e2-rriz ) . Then there is an integer 

N 2:: 1 such that if A, B, C, D are any integers satisfying A D - BC N = 1, then the function f ( z) 
satisfies 

f ( C�z
+
+
B

D ) = (CNz + D)2 J(z) 

for all complex numbers z = x + iy with y > 0. 
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(c) Generalize (b) by finding a relationship between various Cpk 's for primes p. To assist 
you, here are the values of Cpk for p = 3 and 5 and 1 < k < 8. 

C3 1 = -1, C3 2 = -2, C3 3 = 5, C3 4 = 1, 

C3 5 = -16, C3 6 = 13, C3 7 = 35, C3 s = -74, 

C51 = 1, C52 = -4, C53 = -9, C54 = 11, 

C55 = 56, C56 = 1, C57 = -279, C5s = -284. 

(d) Use the relationships you have discovered to compute the following Cm values: 

(i) C400 (ii) C2s9 (iii) C1521 (iv) C16807. 

45.2. In this exercise we look at the modularity pattern for the elliptic curve 

E: y2
= x

3 
+ 1.

The p-defects for E are listed in Exercise 43.5. Consider the product 

(a) Multiply out the first few factors of 8, 

Try to guess what value of k makes the cp's equal to the ap's of E. 
(b) Using your chosen value of k from (a), find the values of c1, c 2, ... , c 18.

( c) If you 're using a computer, find the values of c1, c2, ... , c100. How is the value of c91
related to the values of c7 and c13 ? How is the value of c49 related to the value of c7? 
Make a conjecture. 

45.3. The product 

f(X) = (1 - X)(l - X2)(1 - X3)(1 - X4)(1 - X5) ...

is useful for describing modularity patterns. For example, the modularity pattern for the 

elliptic curve E3 is given by 8 = T · f (T)2
· f (T11 )2. Now consider the elliptic curve

y2
= x

3 
- x2 - 4x + 4.

It turns out that the modularity pattern for this curve looks like 

for certain positive integers j, k, m, n. Accumulate some data and try to figure out the 
correct values for j, k, m, n. (You'll probably need a computer to do this problem.) 



Chapter 46 

Elliptic Curves and Fermat's 
Last Theorem 

Fermat's Last Theorem says that if n > 3 then the Diophantine equation 

An+ Bn =en 

has no solutions in nonzero integers. We proved in Chapter 30 that there are no 
solutions when n = 4. We also observe that if p I n, say n = pm, and if 
An+ Bn = en then 

So if Fermat's equation has no solutions for prime exponents, then it won't have 
solutions for nonprime exponents either. 

The history of Fermat's Last Theorem was briefly discussed in Chapter 4. It is 
probably fair to say that most of the deep work on Fermat's equation done prior to 
the 1980s was based on factorization techniques of one type or another. In 1986 
Gerhard Frey suggested a connection between Fermat's Last Theorem and elliptic 
curves that he thought might give a new line of attack. 

Frey's idea was to take a supposed solution (A, B, e) to Fermat's equation and 
look at the elliptic curve 

EA,B : y2 = x(x + AP)(x - BP).

This elliptic curve is now called the Frey curve in his honor. The discriminant of 
the Frey curve turns out to be 

�(EA,B) = A2P B2P(AP + BP)2 = (ABe)2P,

a perfect 2pth_power. This would be, to say the least, a trifle unusual. In fact, it
would be so unusual that Frey suggested such a curve could not exist at all. More 
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precisely, he conjectured that EA,B would be so strange that its p-defects could not 

exhibit a modularity pattern. Frey's conjecture was put into a more refined form by 

Jean-Pierre Serre, and in 1986 Ken Ribet proved that a Frey curve coming from a 

solution to Fermat's equation would indeed violate the Modularity Conjecture. In 

other words, Ribet proved that if AP+ BP = GP with ABC =F 0, then the Frey 

curve EA B is not modular. 
, 

Inspired by Ribet's work, Andrew Wiles devoted the next six years to proving 

that every (or at least most) elliptic curves exhibit a modularity pattern. Ultimately, 

he was able to prove that every semistable elliptic curve exhibits a modularity pat

tern, and this is enough because the Frey curves turn out to be semistable.1 We can

now proceed as follows: 

Proof (Sketch) of Fermat's Last Theorem 

( 1) Let p > 3 be a prime, and suppose that there is a solution (A, B, C) to

AP+ BP= GP with A, B, C nonzero integers and gcd(A, B, C) = 1. 

(2) Let EA,B be the Frey curve y2 = x(x + AP)(x - BP). 

(3) Wiles's Theorem tells us that EA,B is modular; that is, its p-defects ap 
follow a modularity pattern. 

(4) Ribet's Theorem tells us that EA,B is so strange that it cannot possibly 

be modular. 

(5) The only way out of this seeming contradiction is the conclusion that 

the equation AP + BP = GP has no solutions in nonzero integers. D 

It is here, at the successful resolution of this most famous problem in mathe

matics, that we end our voyage through the Seven Seas of Number Theory. I hope 

you have enjoyed the tour as much as I have enjoyed being your guide and that you 

have found much to admire and much to ponder in this most beautiful of subjects. 

Above all, I hope that you have gained a sense of mathematics as a living, growing 

enterprise, with many wonderful treasures already discovered, but with many oth

ers, even more wonderful, waiting just over the horizon for the person having the 

insight, the daring, and the perseverance to sail into the unknown. 

1 An elliptic curve is semistable if, for every bad prime p 2:: 3, the p-defect ap is equal to ±1. 
There is also a more complicated condition if the prime p = 2 is bad, but luckily it turns out that the 

Frey curves can be transformed so that 2 becomes a good prime.



Further Reading 

Here are some books to assist you in your continuing study of Number Theory. 

The Higher Arithmetic, H. Davenport, Cambridge University Press, Cambridge, 1952 (7th 

edition, 1999). 

A beautiful introduction to number theory, covering many of the same topics as this 

book, but written in a more rigorous style. Highly recommended. 

The following four books are standard introductions to number theory. They each include 

more material than we have been able to cover. The book of Ireland and Rosen uses 

advanced methods from abstract algebra. 

An Introduction to the Theory of Numbers, G.H. Hardy and E.M. Wright, Oxford Univer

sity Press, London, 1938 (6th edition, 2008). 

A Classical Introduction to Modern Number Theory, K. Ireland and M. Rosen, Springer

Verlag, NY, 1982 (2nd edition, 1990). 

An Introduction to the Theory of Numbers, I. Niven, H. Zuckerman, and H. Montgomery, 

John Wiley & Sons, NY, 1960 (5th edition, 1991). 

A Course in Number Theory, H.E. Rose, Clarendon Press, Oxford, 1988 (2nd edition, 

1994). 

The remaining volumes in our list cover specific topics in more depth. 

The Little Book of Primes, P. Ribenboim, Springer-Verlag, NY, 1991. 

A delightful compendium of primes of all sizes and shapes. 

13 Lectures on Fermat's Last Theorem, P. Ribenboim, Springer-Verlag, NY, 1979. 

Fermat's Last Theorem through the centuries, up to, but not including, the break

through proof of Wiles. 

An Introduction to Mathematical Cryptography, J. Hoffstein, J. Pipher, and J.H. Silverman, 

Springer-Verlag, NY, 2008. 

Public key and private key cryptosystems explained, with accompanying background 

in algebra and number theory. 

Introduction to Analytic Number Theory, T. Apostol, Springer-Verlag, NY, 1976. 

Studying number theory via methods from calculus. 

Rational Points on Elliptic Curves, J.H. Silverman and J. Tate, Springer-Verlag, NY, 1992. 

Number theory and elliptic curves, including proofs of special cases of the theorems 

of Mordell, Hasse, and Siegel. 
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